
CODING PYTHON

www.linuxvoice.com

A good text editor will highlight different parts of the
code, so you can see what part does what.

TUTORIAL

HTML is one of the greatest developments in
computing. It’s so simple, anyone with a text
editor can knock up a simple web page with

text, pictures, and links to other sites. This simplicity
gives the web the potential to grow to encompass
almost the whole of humanity. However, its original
developers intended it for content that doesn’t change
very often. Every change to a page of HTML needs the
file to be modified and resaved, which is fine for some
purposes; but sometimes you need something a little
more dynamic. In this tutorial we’re going to look at
four different methods for including constantly
changing content in your website.

Since we’ve got a lovely new magazine, we’re going
to create a lovely new website to help us keep track of
everything that’s going on. The skeleton code for this
website is:
<html>
<head>
<title>All About Linux Voice</title>
</head>
<body>
<h1>All About Linux Voice</h1>
<table>

<tr>
<td>Data1</td>
<td>Data2</td>
</tr>
<tr>
<td>Data3</td>
<td>Data4</td>
</tr>
</table>

If you haven’t come across HTML before, everything
is kept between pairs of angular bracketed tags that
describe what the content is. For example, <h1>
marks the start of heading 1 (the biggest heading),
and </h1> tells the browser that we’ve finished the
heading. The <table></table> tags describe a table,
<tr></tr> describe a table row, and <td></td> describe
a table cell. The skeleton code can be found on the
coverdisc or at linuxvoice.com as lv-skeleton.html.

In this skeleton, Data1 to 4 are the places we’ll put
four different pieces of dynamic content.

As a British magazine, the most important thing to
us is obviously the weather, and this changes a lot. If
we kept looking out of the window, and updating our
website every time the weather changed, we’d have
no time to make tea, let alone a magazine. Fortunately,
though, we don’t have to. The first, and easiest,
method of including dynamic content we’ll look at is
an iframe. These enable you to embed other websites
inside yours. In this case, we’ll embed a weather
forecast. You can put in any website, though it’s best
to do it with one designed for the purpose, otherwise
it’s unlikely to look good. For our purposes,
openweathermap.com provides exactly what we
need. The website http://api.openweathermap.org/
data/2.5/weather?q=Bath,uk&mode=html is a

PYTHON: BUILD
DYNAMIC WEB PAGES
Keep your websites up to date by harnessing
live data piped from Python’s web services.BEN EVERARD

WHY DO THIS?
• Keep your websites up

to date with the latest
information

• Pull data from across
the web and feed it into
your programs

• Discover the powerful
combination of Python
and Tornado

96

Useful Tornado template
Tornado templates are based on Python, but they
have their own simple language. Here are a few of
the most useful commands:

{% set var_x = a_value %} Sets local variable var_x
to the value a_value.
{% if condition_1 %} … {% elif condition_2 %} … {%
else %} … {% end %} An if statement. elif and else
are optional.
{% while condition_1 %} … {% end %} A normal
while loop.
{% import a_module %} Import the Python module
a_module.
{% include a_template %} Copy the contents of
a_template to this point in the file.

There are full details of the template syntax at
www.tornadoweb.org/en/stable/template.html.
In general, it’s best to do as much of the processing
as possible in the web server, and use the template
just to display the data. You can use the included
commands to create various components that you
can combine in different ways on different pages.

PYTHON CODING

www.linuxvoice.com

You can create Twitter
widgets to show anyone’s
tweets, but if they post
something inappropriate,
it will be displayed on your
site as well.

97

compact forecast for the beautiful city of Bath,
designed for embedding.

In the skeleton, you can change Data1 to the
following:
<h2>The Weather In Bath</h2>
<iframe src=”http://api.openweathermap.org/data/2.5/
weather?q=Bath,uk&mode=html” scrolling=”no”
seamless=”seamless”></iframe>

This will embed the weather forecast in our website.
The scrolling value tells the browser that we don’t
want a scroll bar on the iframe, and seamless tells it
that it should be integrated into our page seamlessly.
Not all browsers recognise these, so it will appear
slightly different on different platforms.

Keepin’ Tweetin’
Iframes are the most basic way to grab data and
serve it in a web page. For simple things like weather
forecasts they work great, but sometimes they’re a bit
lacking. Some data providers provide ‘widgets’ that
you can put in your page. These are generally small
chunks of HTML, usually with some JavaScript to
grab data and display it in a useful way. For our Linux
Voice website, we’ll add a widget that grabs the Linux
Voice Twitter feed.

You can create Twitter widgets for any Twitter
account. On the Twitter web page, just go to the cog
menu icon, then Settings > Widgets > Create New. By
default it’ll set it to the currently logged-in account, but
you can change this to whatever you like. We also
changed ours to have a height of 300. Once you’ve
entered the details and hit Create, the appropriate
code will be displayed below the preview. You just
need to copy and paste it in place of Data2. The code

we used was:
 <a class=”twitter-timeline” href=”https://twitter.com/
LinuxVoice” data-widget-id=”419158898222698496”>Tweets
by @LinuxVoice<script>!function(d,s,id){var js,fjs=d.
getElementsByTagName(s)[0],p=/^http:/.test(d.
location)?’http’:’https’;if(!d.getElementById(id)){js=d.
createElement(s);js.id=id;js.src=p+”://platform.twitter.com/
widgets.js”;fjs.parentNode.insertBefore(js,fjs);}}
(document,”script”,”twitter-wjs”);</script>

Of course, you can create your own.
Don’t worry about trying to understand this script

(unless you’re a JavaScript masochist) as it’s
computer generated and not meant to be human
readable. Save the file and refresh your web browser
and you should now have the weather and the latest
news from Twitter all without having to handle any of
it yourself. There are a few options on the Create
Widget Twitter page to help you control the look and
feel of this datastream, so see which settings work
best with your page.

Get more control
The problem with the two previous methods is that
they pull everything from the other website, so as well
as the data you get the
other site’s formatting too.
Sometimes this isn’t a
problem and the simplicity
is worth it. Other times you
may find that you want
more control over how the
content is displayed, or even the ability to process it
before putting it on the screen. Another risk in putting
content from other places on your website is that they
could maliciously alter your page using JavaScript. It’s
unlikely that either Twitter or OpenWeatherMap would
do this deliberately, but if hackers managed to break
into the main system, they could use this to attack all
the web pages that pull data from there.

Therefore, it’s better if you don’t just put other
people’s content directly into your site, but process the
data and produce HTML that uses the raw data. For
this we’re going to use Python.

Make it more dynamic
Server-side processing is great for keeping a site
updated, but it has one fatal flaw: it only updates
the information every time the website is loaded.
Sometimes you need to keep a page’s information
fresh even if the user leaves it loaded.

The simplest solution is simply to tell the browser
to keep refreshing the page. This is incredibly simple
– just add the following tag inside the <head>
</head> tags of the template:
<meta http-equiv=”refresh” content=”60” >
The content value is the number of seconds after
loading you want it to refresh.

This method is a little crude, but it will work. A
more advanced technique is to keep a connection
open between the browser and the server and
continue to send data between them. There are ways
of doing this using HTTP, but a better solution is to
use websockets. These require both code on the
server and JavaScript running in the browser in order
to work properly, and they’re a bit beyond the scope
of this tutorial, but you can find out how to use them
on the Tornado website at www.tornadoweb.org/en/
stable/websocket.html.

“You may find that you want
more control over how the
content is displayed”

CODING PYTHON

www.linuxvoice.com

If there’s a problem with
the template, the site
won’t load. You’ll get
Python errors, but they
aren’t usually very helpful.

Data sources
There are loads of places you can get
information for dynamic websites.
OpenWeatherMaps provide JSON-
encoded weather data for forecasts as
well as current weather. Twitter also
has an API that’s easy to use through a
module such as python-twitter
(http://code.google.com/p/python-
twitter).

In addition to the ones we’ve looked
at here, these are some more that you
may find useful:

Facebook Graphs API
(https://developers.facebook.com/
docs/graph-api)
IPInfoDB (http://ipinfodb.com/ip_
location_api_json.php) enables you to
check the location of an IP address.

The BBC (among others) publishes an
RSS feed of the latest news. It also
has a few APIs to help you access
information about what’s happening.
Reddit can be browsed through JSON.
For an example, take a look at
www.reddit.com/r/linux/hot.json.
For more information see
www.reddit.com/dev/api.
StopForumSpam hosts a database of
known spammer IPs that you can use
to vet visitors, though there are some
restrictions on use. Take a look at
www.stopforumspam.com/usage
These are just a few examples;

there is a huge range of data sources
available. Many offer free access, but
some are only for paying customers.

98

The Tornado module contains a web browser that
lets you modify templates by passing more
information to them. To start with, you’ll need to make
sure you have the appropriate Python modules
installed. We’ll be using Tornado and Feedparser (as
well as some modules from the Python standard
library). These are available through the PIP (Python
Install Python) package manager for Python, but it’ll
be easier to keep them up to date if you install them
through your distro’s package manager. On Debian-
based systems you can do this with:
sudo apt-get install python-tornado python-feedparser

Once this is done, you just need a simple Python
program to serve the website. We’ve called this code
webserver-start.py and it’s on the DVD and website.
import tornado.ioloop
import tornado.web
class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.render(“lv.html”)
application = tornado.web.Application([
 (r”/”, MainHandler),])
if __name__ == “__main__”:

application.listen(8888)
tornado.ioloop.IOLoop.instance().start()

We won’t go into everything that’s going on here
(you can learn more about Tornado from the excellent
documentation at www.tornadoweb.org/en/stable),
but simply put, this starts a web server on port 8888 of
localhost. It has a class called MainHandler, which is
used every time someone visits the root of this web
server (ie r”/” in the above code). The method get of
this class is called every time someone sends a GET
HTTP request to this address, and it renders the
template lv.html. (Make sure the HTML file you created
before is called lv.html). As long as you save this in the
same directory as lv.html, you can run it from a
terminal in the same directory with:
python webserver-start.py

Once that’s running, you can point a web browser to
http://localhost:8888 and it’ll display the same page
as before. The difference is that it’s now a Tornado
template, which has more power than regular HTML,
and you can pass it data from the Tornado server.

A Yen a Mark a Buck or a Pound
As Linux Voice does a lot of business in the USA,
changes in the exchange rate between the Dollar and
the Pound make a difference to our income. Keeping
tabs on this is important, so the next bit of data we
pull in will be the latest exchange rate.

www.openexchangerates.org operates a service
that enables you to grab the latest exchange rate data
(you’ll need to register for an API key before you can
use it though). There are various levels, but the free
one is suitable for our needs, and you can sign up for
it here: https://openexchangerates.org/signup/free.

The data comes in JSON (JavaScript Object
Notation) format. While this was designed for
JavaScript, it also works really well with Python.

There are a couple of Python modules that help us
get and access the data: urllib2 and json. The code to
grab and access the data is:
import urllib2
import json
def getRate() :

url = “https://openexchangerates.org/api/latest.
json?app_id=YOUR_API_KEY”

req = urllib2.Request(url)
response=urllib2.urlopen(req)
return json.loads(response.read().decode(“UTF-8”))

[‘rates’][‘GBP’]
This piece of code needs to go into the webserver-
start.py file between import tornado.web and class
MainHandler. Change YOUR_API_KEY to the one you
got when you signed up for the service.

urllib grabs and opens the resource, then the json
module converts it into a Python dictionary. This has
the key rates, which is another dictionary, and the key
GBP returns the Dollars–Pounds exchange rate. You
then need to pass the latest data across to the
template by changing the line self.render(“lv.html”) to:
self.render(“lv.html”, rate = getRate())

PYTHON CODING

www.linuxvoice.com

Ben Everard is the co-author of Learning Python With
Raspberry Pi – coming soon to an Amazon near you.

99

This created the global variable rate that you can
access in the HTML template with {{ rate }}. Change
Data3 to:
<h2>The Exchange Rate</h2>
One dollar is {{rate}} pounds

After you make any changes to either the webserver
code or the template, they won’t take effect until you
restart the web server (a simple Ctrl+C to stop it, then
re-running python websever.py does this). You can
then refresh the website in the browser. If everything’s
worked correctly, you should see the exchange rate
displayed. You can use this method to put whatever
you want into the web page. This could be things
you’ve just pulled from a database, or information
about the computer that you’re running on as well as
data grabbed from other sources.

Going Loopy
Tornado templates can do far more than just display
the values that are passed to them. They can also
include bits of Python code that can manipulate the
data. The final piece of our datastream will
demonstrate this. We’ll pull in the latest posts from
the Linux Voice website using RSS and the feedparser
module. This works a bit like the json module in that it
pulls in data and converts it into a Python dictionary.
However, unlike in the previous example, this time we’ll
pass the entire dictionary to the template and process
it there. You’ll need to add the line
import feedparser

To the start of webserver.py, then change the get
method of MainHandler to:

XML
We’ve looked at JSON, HTML and RSS for data
sources, but they’re not the only options. XML is also
a common format for data on the web, though it can
be a little more complex than the others. It’s often
done using ElementTree. As the name suggests, this
converts the XML into a tree from which you can
then extract the information you need.

lv_feed = feedparser.parse(‘http://www.linuxvoice.com/feed/’)
self.render(“lv.html”, feed = lv_feed, rate = getRate())
You don’t need to use urllib2 to get the document with
RSS, as the feedparser module handles everything.

On our page, we want to loop through every entry in
the RSS file and display the post title as a link to the
post on linuxvoice.com. In the template, you can
include Python code inside {% %} brackets.
Indentation doesn’t work; instead, blocks of code are
ended using {% end %}. This is done with the following
code (in place of Data4):
<h2> The latest news from RSS:</h2>

{% for entry in feed.entries %}

{{ escape(entry.title) }}

{% end %}

The final version of webserver.py is on the website
and DVD as webserver-final.py.

 creates an unordered (ie bullet pointed)
list, and tag items in the list.

This for loop repeats every line between it and the
end, including the HTML lines. This will then create a
new list item for every item in feed.entries. The
escape() function just adds escape characters to the
text before passing them across so they display
correctly in the browser.

As you can see, any data that you can access with
Python, you can display on a website. Tornado
templates give you complete control over how these
are displayed. If you’re already running a website with
Apache, it isn’t easy to incorporate this last technique
into it, though you could do something similar with
PHP or even JavaScript. If you’re using Nginx as a
web server, you could set it up to reverse-proxy a
Tornado server for some pages while retaining the
speed of Nginx for simpler pages.

We focused on simplicity
so it’s not pretty to look at,
but there are plenty of CSS
and HTML tricks to sort
that out.

You’ll find a comprehensive list of useful data sources at
www.programmableweb.com.

