
CODING GREP GAMES

www.linuxvoice.com

Word wheels: a
challenging mental puzzle
or a simple command?

TUTORIAL

It’s no secret that Bash, the shell on most Linux
systems, is an incredibly powerful tool, however
it’s one that many Linux users don’t take the time

to fully learn. A lot of tutorials focus on boring but
practical uses like managing log files, but it doesn’t
have to be this way. Bash can be fun.

Here at Linux Voice, we want to give this tool some
love, so we’re inaugurating the Grep Games. This is an
event where you use Bash together with grep to solve
the sort of word puzzles you find in glossy magazines.

Here’s an example: what is aedh an anagram of? To
solve this, you’re going to need a list of English words.
This comes as standard on most Linuxes, and can
usually be found at /usr/share/dict/words or /usr/
dict/words. If it’s not there, check for a words or
wordlist package in your package manager. Failing
that, you can grab it from the DVD or linuxvoice.com.
In this article, we’ll use /usr/share/dict/words, but you
should change this if your words file is elsewhere.

We’ll use egrep (like grep but uses extended regular
expressions, which have a cleaner syntax than plain
regular explessions) to find the right words. If you
haven’t come across this tool before, take a look at the
boxout on grep and regular expressions, right.

You can find any word that contains just the letters
aedh with this line:
egrep “^[aedh]*$” /usr/share/dict/words

The ^ matches the start of the line, $ the end of the
line and [aedh]* matches any string of the letters
aedh. However, these aren’t all anagrams. Any
anagram must be exactly four letters long, so let’s

only match words of exactly four characters:
egrep “^[aedh]{4}$” /usr/share/dict/words

This is a bit better, but there are still some with
repeated characters. To solve this we’re going to pipe
the output into a second instance of egrep, like this:
egrep “^[aedh]{4}$” /usr/share/dict/words | egrep -v “(.).*\1”

If you run this, you’ll find that it only returns one line,
the anagram of aedh. The second egrep has the -v
flag, which means that it works in reverse; that is, it
only outputs lines that don’t match the pattern. The
pattern (.).*\1 matches any line with a repeated
character in it because (.) matches any character, .*
matches any string of any length (including nothing)
and \1 is a back reference to the first character. For
more details on this, see backreferences in the boxout
on Grep and regular expressions.

Sometimes an anagram will contain a repeated
letter, and that would be missed by the above. Take,
for example, eeeddh. The previous method won’t
work, so instead we need to match different letters
different numbers of times. The code for this is:
egrep “^[edh]{6}$” /usr/share/dict/words | egrep “*^[^e]*(e[^e]*)
{3}[^e]*$” | egrep “^[^d]*(d[^d]*){2}[^d]*$” | egrep -v “([^ed]).*\1]*”

Here the second and third egreps both work in the
same way. They make sure that a particular letter is
repeated exactly a certain number of times. [^e]
matches any character except e, so the second egrep
matches any string that starts at a new line, has any
character other than a letter ‘e’ zero or more times
followed by three occurrences of the bracketed
expression (which contains e once and any string of
other characters), then anything that isn’t an e zero or
more times followed by an end of line.

The final egrep makes sure that nothing other than
e and d are repeated.

I’ll have a vowel please Carol
This solves complete anagrams, but that’s not always
what you want to do. In the UK there’s a quiz show
called Countdown, in which the contestants have to
make the longest word they can out of a given
sequence of nine letters.

You can solve this in a similar manner to the above
problem, but by using ranges for the number of
characters rather than an absolute number. Take a
look at this example for the letters a,e,e,f,d,m,t,t,i
egrep “^[aefdmti]{1,9}$” /usr/share/dict/words | egrep
“*^[^e]*(e[^e]*){0,2}[^e]*$” | egrep “^[^t]*(t[^t]*){0,2}[^t]*$” | egrep
-v “([^et]).*\1]*”

SOLVE WORD
PUZZLES WITH BASH
The humble command line interface is amazingly powerful,
for both real work and playing games.BEN EVERARD

WHY DO THIS?
• Get to grips with egrep

and extended regular
expressions

• Never get stuck on word
puzzles again

• Search through all the
text files on your system
with ease

102

t e
f

p d

i

GREP GAMES CODING

www.linuxvoice.com

www.regex101.com is
an online tool to help
you understand regular
expressions. Unfortunately
it uses regular expressions
from PHP, Python and
JavaScript, which are
slightly different from
egrep.

103

However, this doesn’t quite solve our problem. We
don’t want all the words that match, just the longest
one. To get this, we need to go beyond a single line
and create a script.
#!/bin/bash
longestLength=0
longestWord=””
while read word
do
 if ((${#word} > longestLength))
 then
 longestLength=${#word}
 longestWord=$word
 fi
done
echo $longestWord

This code reads each line from standard in (while
read line) and checks its length against the previous
longest word. At the end, it echos (prints) the longest
word its found. To include this with the previous egrep
commands, just use:
egrep “^[aefdmnti]{1,9}$” /usr/share/dict/words | egrep
“*^[^e]*(e[^e]*){0,2}[^e]*$” | egrep “^[^t]*(t[^t]*){0,2}[^t]*$” | egrep
-v “([^et]).*\1]*” | bash longest.sh

Where longest.sh is the filename of the above
script (it’s on the website and DVD).

Another puzzle similar to Countdown is the word
wheel. This is where there’s a series of letters on the
outside of a circle and one in the middle. You then
have to find as many words as possible that contain
the letter in the middle and two or more of the letters
on the outside. The example puzzle on the facing
page can be solved with:
 egrep “^[fedpt]*i[fedpt]*$” re/dict/words | egrep -v “(.).*\1” |
egrep “.{3,}”

Word ladders are a bit different to the puzzles we’ve
looked at so far. Instead of arranging various letters

into words, you start with a word, then each rung of
the ladder you change a single letter from the word
above until you end up with a final word.

There are two separate parts to look at. The first
part is finding all the words that can follow a particular
word. The second part is finding out if a particular
word can precede the final word.

Let’s try the ladder:
live

raft

To solve this you have to come up with three words.
#!/bin/bash
for x in $(egrep “^liv.$|^li.e$|^l.ve$|^.ive$” /usr/share/dict/words)
do

query=’^.’${x:1:3}’$|^’${x:0:1}’.’${x:2:2}’$|^’${x:0:2}’.’${x:3:1}’$|
^’${x:0:3}’.$’

for y in $(egrep $query /usr/share/dict/words)
do

query2=’^.’${y:1:3}’$|^’${y:0:1}’.’${y:2:2}’$|^’${y:0:2}’.’${y:
3:1}’$|^’${y:0:3}’.$’

Grep and regular expressions
Grep is a popular tool for finding particular
pieces of text. As well as solving word games,
it’s also useful in finding particular messages
in log files and other ‘real’ work. egrep is like
grep, but it uses extended regular expressions
rather than ordinary regular expressions.
These have a cleaner syntax, so it’s these that
we’ll use here.

The basic usage is:
egrep <pattern> <file>

This will output every line in the file that
matches <pattern>. It can also be used in a
pipe like this:
cat <file> | egrep <pattern>
This just prints every line that cat outputs that
matches <pattern>.

The trick with egrep is in mastering
extended regular expressions.

A letter just matches itself, so for example,
abc will match any line that contains the string
abc anywhere in it. ^ matches the start of the

line and $ matches the end of the line, so ^abc
matches any line that starts with abc, abc$
matches any line that ends with abc and ^abc$
matches any line that contains just abc. The
“.” character matches any character, so ^a.c$
will match abc, adc, aac, but not ac. This is
known as backreferencing.

You can also match groups of characters,
eg ^[ab] will match any line that starts with a
or b, while ^[^ab] will match any line that starts
with any character other than a or b. ^[a-z] will
match any line starting with a lower-case
letter. There are also a few special options
here such as [[:space:]], which matches any
whitespace (space, tab, etc) and [[:lower:]]
which matches any lower-case letter.

You can match characters more than once.
* matches zero or more times, + one or more
time, and ? zero or one time. So, ^a*$ matches
a line that contains a number of a’s but no
other characters. ^a.*a$ matches a line that

starts and finishes with a letter a. ^a.+a$
matches any line that starts and ends with an
a and has at least one character in between.
You can also specify a range of the number of
matches you want by using {}. For example,
^a{2,3}$ will match the lines aa and aaa, but
nothing else. You can bracket parts of regular
expressions as well. This is useful because it
allows you to refer to particular matches. \1
matches whatever the first bracketed
expression matched, \2 matches what the
second matched and so on. For example, (.).\1
will match any two characters that are the
same separated by a character, such as bob,
did, aaa, but not abc.

The final part of extended regular
expressions that we’ll look at is |. This allows
you to match against more than one pattern.
For example, ^ab|^bc will match anything that
starts with either ab or bc, but not ac or
anything else. ^(ab|bc) does the same thing.

CODING GREP GAMES

www.linuxvoice.com

egrep will highlight the
particular part of each line
that matches the regular
expression.

Ben Everard is the co-author of Learning Python with
Raspberry Pi, soon to be published by Wiley. He’s also pretty
good at turning foraged fruit into alcohol.

104

for z in $(egrep $query2 /usr/share/dict/words | egrep
“^raf.$|^ra.t$|^r.ft$|^.aft$”)

do
if [$x != $y] && [$x != $z] && [$x !=

“live”] && [$x != “raft”] && [$y != $z] && [$y != “live”] && [$y
!= “raft”] && [$z != “live”] && [$z != “raft”]; then

echo “live”
echo $x
echo $y
echo $z
echo “raft”
echo “---”
fi

done
done

done
This code performs three for loops, one for each of
the missing words. The first for loop runs on every
word that matches the regular expression “^liv.$|^li.
e$|^l.ve$|^.ive$” this is effectively four different
regular expressions separated by |. Together, it will
return any word that matches any one of these
sub-expressions.

Inside this for loop it runs the line
query=’^.’${x:1:3}’$|^’${x:0:1}’.’${x:2:2}’$|^’${x:0:2}’.’${x:3:1}’$|^’$
{x:0:3}’.$’

This just builds up a regular expression equivalent
to the first one but for every word returned. x is the
variable holding the word, and ${x:1:3} (for example)
returns characters 1 through 3 of the word held in
variable x (the first character is 0). The second for loop
works in exactly the same way as the first.

The final for loop is a bit different because it not
only has to match the word above it, but the word
below it as well. For this reason it runs two egreps on
the words: one to match the words above, and the
second to match the words below. The if statement
simply removes any solutions that repeat words.

Playing GCHQ
Substitution ciphers are easy-to-break encryption
systems where you take each letter of the alphabet
and represent it with a different symbol. The point of
the puzzle is to work out what letters the symbols
represent. As an example, the cipher:
12334, 56 7852 90 a27
could correspond to:

hello, my name is ben
because h=1, e=2, l=3, o=4, m=5, y=6, n=7, a=8, i=9,
b=a.

Now take a look at the following:
123452 672 8298a2 bc 9889dbeb9c

The main clue here are repeated letters which you
can match using back references. You could try to
build a script to match the whole lot in one go, but it’s
far easier and quicker to pick on part with quite a few
repeated characters and just match that. Once you’ve
got that, it should be quite trivial to finish it off. We
decided to work with the final two words. A script to
solve them is:
#!/bin/bash
list2=$(egrep “(.)(.)\2\1.(.).\3\1.” /usr/share/dict/words)
for word1 in $(egrep “^.{2}$” /usr/share/dict/words)
do

for word2 in $list2
do

echo $word1” “$word2 | egrep “^(.)(.)
[[:space:]](.)(.)\4\3.\1.\1\3\2$”

done
done

The first loop goes through every two letter word
while the second one loops through every word that
matches the particular pattern of backreferences.

The guts of the code is the line:
echo $word1” “$word2 | egrep “^(.)(.)[[:space:]](.)
(.)\4\3.\1.\1\3\2$”

It checks every pair of words generated by the two
wloops for a particular pattern of back references
which correspond to repeated characters in the
ciphertext.

This method could be expanded to match three or
more words, though it will slow down significantly
with each new word.

Once you’ve got some of the letters, you should be
able to come up with patterns based on the letters
you know to find the other words.

Many programs have some form of regexes built in. Here,
gvim is finding all USB messages for user ben in the syslog.

GREP GAMES CODING

www.linuxvoice.com 105

Challenges
Test your skills by writing scripts to solve the following word puzzles

The final challenge is something different, one we
haven’t covered so far: a word search. To make
matters a little easier, there are only horizontal
words, and none of them are backwards. The
challenge is to write a Bash script that can go in
the following pipe:
cat wordsearch.txt | bash yourscript.sh
and output all of the three- or more letter words
from the words list (/usr/share/dict/words or
usr/dict/words) that are in the file.

The word search is (on the DVD and website as
wordsearch.txt):
zfghellohb
binarytwno
thisenthat
dfjunglwmr
scoffeeqwj

lhzniphoto
rlightovqx
yelsocketn
fbicycleow
ykerolbuha

To make things interesting, there will be two
prizes, one for the smallest (in terms of characters
in the Bash script), and one for the one that runs
fastest (completes execution with all the words
found in the shortest time). The words must be
found with a form of GNU grep (egrep, pgrep, etc.)
matching a regular expression.

There are few differences between versions of
Bash on different Linuxes, so we’ll be testing on a
fresh install of Debian Unstable. This is only likely
to matter if you’re relying on particularly new or
exotic features.

To be eligible, your program must be licensed
under an OSI-approved licence compatible with the
GPL v2 or v3. We recommend using GPLv3.

All entries must be sent to ben@linuxvoice.com
by 31 March, and the winner will be announced in
issue 3 (and on linuxvoice.com). You don’t have to
have bought a magazine to enter (details will be
posted to the website) so feel free to pass details
of the competition
on others.

In the event of
a tie, the solution
that was sent in
first will win. In
all matters, the
editor’s decision
will be final.

Encryption
ainpprss
abeprrrsy
bbceirssu

1 2134 567894550 518824 1a4 a546b4
1234 34 5641 127 879300309
123 456 4 378936 8708a8034b

CountdownAnagrams
tnxpamies
dimtescat
hofanescp

Word wheel

t r
i

a n
o

s

p
i e

m

g d
l

a

c
t e

a

b s
i

m

f

band

meat

Word ladder
brag

plan

wire

pant

Find words, win clothing!

