
FAQ WAYLAND

www.linuxvoice.com

WAYLAND
The Anglo-Saxon god powering your next generation graphical desktop.

Why does Wayland need two
pages of explanation?
For most of us, Wayland is
difficult to understand because

there’s nothing tangible to click on.
There’s no ‘About’ box to open or
configuration panel to play with. But all
of these graphical elements can be
displayed on your Linux desktop using
Wayland – it’s just that Wayland hides
beneath the surface. The important
point is that it’s a big improvement over
the way this was done before, and is
currently done now.

In simple terms, Wayland has the
potential to make your desktops talk to
your graphics hardware much more
efficiently. Developers won’t have to
work with an arcane system that’s
massively over-engineered and
complicated, while users should see
performance benefits and more eye
candy. It really could revolutionise the
Linux desktop.

That sounds promising. What
does Wayland actually do?

Imagine it’s the 80s. You’re sitting
in your bedroom prodding away

at a Commodore 64, listening to the
Human League and staring through
thick-rimmed glasses at your 14-inch
colour television. You’re coding a game
and working on the graphics. To get the
best performance, your code is talking
directly to the graphics hardware, the
venerable VIC-II chip. One of VIC’s best
features was its ability to allow the
programmer to create a simple
graphical element, perhaps a spaceship
or a gold miner, called a sprite. All the
programmer had to do was tell a sprite
what to look like, what colour to be and
where to appear. They helped the
programmer forget about the nuts and
bolts of how their computer worked
and concentrate on the gameplay.

This is what Wayland helps to do for
the modern programmer. They can
forget about the nuts and bolts of
graphics and concentrate on usability.
But because software stacks are now
several layers deep, Wayland isn’t
aimed at the application programmer
most analogous to our 80s games
programmer. More often than not, it will
be toolkits such as Gnome’s GTK or
KDE’s Qt that need to talk to Wayland,
and it’s these that need to be updated
to accommodate its requirements.
Application developers shouldn’t need
to change their code, unless they’re
using something specific to the way the

current system works. As long as the
API supports Wayland, the applications
will support Wayland and automatically
look and feel awesome.

Brilliant! So how come it hasn’t
been adopted already?
It’s not immediately faster than
the alternatives, which

disappointed many early adopters. Nor
is Wayland network-transparent, which
means it doesn’t include the ability to
serve desktop sessions across a
network in the way that early X11 did.

The complexity that comes with
network transparency is a burden on
the current system. That doesn’t mean
there won’t be an alternative, such as a
more VNC-like approach to sharing the
image buffer to a remote address. It
just means that any solution won’t be
as overbearing. In fact, the Wayland
community think that a remote desktop
solution using Wayland will be better
than VNC on X11 anyway.

X11 is the system that
Wayland is going to replace?
Yes. X11 was designed for a
different era of computing – the

same 1980s of that old Commodore
64. And the key requirement for any
1980s-era enterprise computing
installation was for remote graphical
terminals. X11 was designed to work
across a network so that low powered,

60

“More often than not it will
be toolkits such as GTK or Qt
that need to talk to Wayland”

GRAHAM MORRISON

FAQ WAYLAND

www.linuxvoice.com

cheap terminals could connect to a
centralised computing resource with
lots of storage, CPU and RAM.

The apps ran on the central
computing resource and sent
instructions back on what to be
displayed to each terminal. You can still
do this with X11 today. In fact, you are
doing this today: X11 uses the same
client and server configuration even
when everything is running on the
same machine, making the separation
between the client and server a little
pointless. There are several other big
chunks of X11 that have become
redundant, such as its inclusion of
some core fonts or big parts of the
rendering API – features that are now
part of toolkits like GTK and Qt. Then
there are the four input subsystems.
And that network transparency we were
just talking about? It won’t work when
using modern modern systems with
X11 anyway, because of the way they
talk to the local graphics hardware.

So what’s to stop Wayland
from being just as bad?
Apart from the simplicity, there’s
no legacy code to get in the way

of creating a modern graphical
subsystem. Just imagine what X11
might be like in another 10 years, and
it’s difficult to think of how it might
adapt to tablets and smartphones.

It’s also capable of using hardware
specific backends. This won’t be
necessary for most installations, but
there’s a backend for the Raspberry Pi
that has considerably improved its
graphical prowess, when compared to
X11, so perhaps performance might
improve after all.

If it’s so hopelessly crufty, how
has X11 lasted so long?
For one simple reason: it works.
That’s something that can’t be

said for a great many other
technologies. It’s stable, despite its
complexity, and it’s a well understood
and a well integrated part of the
system. Thanks to the development of
many other modules that connect to
X11, it’s a modern and adaptable
solution. But it’s never going to get
simpler nor better adapted to the kind
of computing we do now. All those
extensions and plugins, for example,
lack any kind of version control, and

that means there’s no easy way of
knowing which features you’re going to
get when your application supports a
different version of a plugin to your X11
installation. Come the revolution,
though, you’ll still be able to run X11
tools and applications through a
compatibility layer called XWayland.

Does Wayland do away with
the server and client model?
No. But the client/server model
used by Wayland makes more

sense. The server is something called
the Wayland Compositor, and desktops
such as E17 or Gnome, going through
their respective APIs, are considered the
clients. This is why you always see
Wayland described as a ‘protocol’, rather
than a way of rendering graphics. It’s
the protocol that defines how the clients
speak to the server. A server could be
replaced with another server, as long as
they understood the same protocol.
Which is exactly what the people behind
Wayland hope will happen. E17 and
Gnome both have their own Wayland-
compatible compositors.

Hang on a mo – what’s a
compositor?
You might have first heard the
term when desktop effects

started to become popular. Compiz, for
example, is perhaps the best-known
compositing window manager. It adds
effects such as wobbly windows,
desktop shadows and transparency,
and it does this by compositing the
contents of the various windows under
its control into a single image that can
then be used as the desktop. That’s
why when you run Compiz, you have to
replace whatever window manager
you’re currently using.

In Wayland, the compositor does the
same job, only without the help of X11
to turn the final composited image into
the desktop you see. It’s the server
process that pulls all the graphical
components together to create what
you’d expect to see on the screen. For
Wayland, that would mean the server
that composes the contents of the
various client application windows
before sending them on to the
rendering stage. These elements
already exist, and are not part of
Wayland. They’re used to get the output
from the compositor to your screen.

If Compiz worked with X11,
why is Wayland any better?
It simplifies the process. X11 was
the gateway between the app

and the compositing. With Wayland, the
applications talk to the compositor
without having to go through X11.
Wobbly windows with a compositor in
X11 worked, but it was much harder if
you wanted to tell the compositor you
were working with hardware overlays to
play back video. Wayland’s direct line of
communication is a much better way to
accomplish the same tasks.

Is 2014 going to be the year of
Wayland on the desktop?
We think so, yes. Gnome 3.12 can
now operate as a Wayland

compositor, bringing native support to
the Gnome desktop. So too can
Enlightenment’s compositor after a
huge code dump in the middle of
January. The reference compositor for
Wayland, named Weston, saw plenty of
updates in January’s 1.4 release, and
there’s a new Qt 5.2 based desktop
called Hawaii that uses Weston. Even if
KDE’s Wayland support is slow in
making an appearance, you’ll definitely
be able to migrate to a Wayland-only
desktop in the near future.

61

Wayland is mostly a protocol because it defines how the
various components in the stack talk to one another
[Image Credit: CC-BY-SA 3.0: ScotXW, based on work by
en:Kristian Høgsberg published at en:freedesktop.org:
http://wayland.freedesktop.org.

GNOME Shell

Nautilus

Clutter 1.14
libwayland-client

GTK + 3.12
libwayland-client

Qt 5.1
libwayland-client

KDE Plasma

libwayland-EGL libEGL-mesa-drivers
libEGL-mesa

libGBM

M
es

a
3D

EGL
OpenGLIES
OpenVG

W2BGL
glue
code

W2BGL
glue
code

W2BGL
glue
code

Graphics
Device Drivers:

libGLES-mesa
libOpenVG-mesa

libGL-mesa-DRI

libDRM

ioctl

evdev

Weston, Mutter, KWin, Clayland,
Enlightenment . . .

libwayland-server

kms drm

Kernel

CPU (registers & L1 & L2 & L3 & L4) & main memory
GPU (registers & L1 & L2) & graphic memory

EGL

EGL

EGL

EGL

2

2

3

3
2

3

1 4

W
W

W

W

W

framebuffer

by Samuel Csaba Otto Traian: GNU FDL 1.2+ and CC-BY-SA 3.0+; created 2013-08-28; updated 2013-10-30

