
CODING CONCEPTS

www.linuxvoice.com

Computers follow a series of instructions step
by step until they get to the end. This series of
instructions is called a program. However,

what if something can’t be calculated with a series of
step-by-step instructions? Or what if the series of
step-by-step instructions would take so long to
complete that running them is impractical?

In these cases, we need a method that side-steps
the main problem, but still attempts to find an answer.
One way to do this is to use genetic algorithms. This
mimics the natural process of evolution to attempt to
solve a problem through a combination of
randomisation, selection and combination.

The basic method goes like this:
Create a random set of data in the right format to
solve the problem.
Apply some test to see which of the data solve the
problem best.
Combine the best pieces of data, throw in a little
randomness and go back to step two.
In the real world, this is how we became us. Initially,

there were some primeval organisms with some DNA
and not much else.
This was step 1. The
weakest of these
organisms died off
leaving only the
strongest. This was
step 2. These

remaining organisms reproduced. This is step 3. The
final two steps have been repeating ever since life on
earth started, and we are the result, as are all the other
living things.

To model this computationally, the key thing we
need is a fitness selector. This is the test that we’ll
apply to the data to see if it should pass on its
characteristics to the next generation, or if it should be
pruned from the evolutionary tree leaving stronger
data to go forward.

Essentially, it’s this function that defines your
genetic algorithm and what data it will search for – it
turns programming around, so that you write a
program specifying what the solution should look like,
then leave the computer to work out what it is.

Genetic square roots
Let’s take a look at an example. There isn’t actually an
easy way to calculate square roots, however, it is very
easy to go the other way around and calculate the
square of a number. So, this is the sort of problem that
genetic algorithms are good at. We’ll program it in
Python using the pyevolve module. This may be in
your distro’s repositories in the python-pyevolve
package, or you can get it with
 pip install stallion

The evaluation function for our square root finder is:
def eval_func(chromosome):
 score = 0.0
 for value in chromosome:
 score += 100000000-abs(((square_root_of-(value*value))))
 return score
This function will be passed a list of data that
represent the organism that you’re evaluating. In the
case of our square root calculator, this will have just a
single value, but in other cases, it could hold many
values representing different aspects of the organism.

It returns a value that the genetic algorithm will
attempt to maximise. In this case, it will try to
maximise 100000000-abs(((square_root_of-
(value*value)))). abs() returns the absolute value of a
number – this means that it just removes the negative
sign on negative numbers, so abs(10) is 10, and
abs(-5) is 5. The abs() call in this function, then, will
return a larger number the further the value is from
the actual square root. However, our algorithm will try
to maximise the result, so we want this number to get
smaller the further it is from the square root. To do
this, we take the result away from 100000000.

We said that this function effectively defines the
genetic algorithm, and this is true. However, we do
need a bit more code to define the environment that
the evolution will take place in. Since genetic

NASA use genetic
algorithms to find the
best antenna designs for
spacecraft.

GENETIC ALGORITHMS:
CREATE LIFE WITH PYTHON
Everything’s easy in Python. Even things that aren’t easy to solve
can be evolved with a little generic magic.

CODING TUTORIAL

BEN EVERARD

104

“Genetic algorithms mimic the
natural process of evolution to
solve a problem.”

CONCEPTS CODING

www.linuxvoice.com

algorithms rely on a certain amount of randomness to
find the right values, there’s no guarantee that they will
ever find the right value. You can increase the chances
of them working correctly by tweaking the
environment for the particular problem you’re trying to
solve. The full code we’ve used is as follows:
from pyevolve import *

square_root_of = 1000

def eval_func(chromosome):
 score = 0.0
 for value in chromosome:
 score += 100000000-abs(((square_root_of-(value*value))))
 return score

genome = G1DList.G1DList(1)
genome.evaluator.set(eval_func)
genome.setParams(rangemin=0, rangemax=int(square_root_
of/2))
genome.crossover.set(Crossovers.G1DListCrossoverUniform)

ga = GSimpleGA.GSimpleGA(genome)
ga.setPopulationSize(square_root_of)
ga.setGenerations(50)
ga.evolve(freq_stats=10)

print ga.bestIndividual()
This code will attempt to find the square root of 1000,
which is a little unfair since the software only works
with integers. If it works correctly, it should find the
closest whole number to the square root of 1000.

The variable genome holds an instance of G1DList.
The parameter we gave when creating this is the
number of items in the list. Once this variable is
created, you can set certain attributes about it. The
only thing that has to be there is the call to evaluator.
set(). This tells the genome what function to use to
test the fitness.

The other two things we’ve set aren’t essential for it
to work, but make it much more efficient. We’ve
limited the range to between 0 and half of the number
we’re trying to find the square root of. The smaller we
can keep the range, the less work the genetic
algorithm will have to go in order to find the square
root. Since we’re dealing with integers, and this rounds
up, it doesn’t stop us getting the right answer.

The crossover is the way in which strong pieces of
data are combined. There are quite a few options in
pyevolve, but not all of them work with lists containing
just one element.

The final block of code creates a genetic algorithm
that takes this genome and evolves it. Again, there are
some settings we can tweak to make the environment
conducive for getting the right answer. The key value
here is the population size. This is the number of
organisms we create each cycle by combining the
most successful from the previous cycle (and adding
some mutations). We found that larger square roots
required larger population sizes because the number

of values in the range is larger. Therefore, we set the
population size to be the number of which we’re trying
to find the square root. There wasn’t any clever
calculation that drew us to this setting. We just tried a
few different options, and this one seemed to work
out the best.

You can also change the number of generations.
This is, pretty obviously, the number of times you
repeat the selection and recombination. Again, we
came across the setting for this after a bit of trial and
error. When you run the code, you’ll see that it outputs
the fitnesses every 10 generations, so you can easily
see how quickly it’s getting to the solution (or getting
stuck at the wrong solution).

Now go and clone some dinosaurs!
That’s all there is to it! This code is quite general-
purpose, and you should be able to adapt it to your
own problems. There is a certain amount of science/
art/luck/witchcraft in finding the right values for the
environment to produce a good result, and even with a
good environment, there’s no guarantee of getting the
right answer. In fact, if you run this a few times, you’ll
probably get the wrong answer occasionally.

Genetic algorithms aren’t great at every problem,
but they can produce surprisingly good results to very
complex problems as long as a good fitness function
can be created. Essentially, it’s a method of searching
through a data set that’s too large to exhaustively
search, and where a simpler search (like binary
search) won’t work. Incidentally, binary searches do
work well for finding square roots, and we’ve only
used genetic algorithms here as an example.

If you want to experiment further with genetic algorithms, the pyevolve module is well
documented at http://pyevolve.sourceforge.net.

105

Ben Everard is the best-selling co-author of the best-selling
Learning Python With Raspberry Pi.

