
TUTORIAL SERVER HARDENING

www.linuxvoice.com

WHY DO THIS?
• Stop bots and crackers

getting easy access to
your systems

• Understand the
trade-offs between
security and
convenience

• Re-use the skills you
learn here when you
install distros in the
future

B ruce Schneier, the well regarded American
expert on cryptography and computer
security, once said these wise words: “security

is a process, not a product.” Keeping your servers safe
from malicious types isn’t just achieved by chucking
on a few extra pieces of software, but by having
proper plans and procedures to deal with issues that
come up. And security is a moving target – you might
have your systems locked down and fully patched
right now, but you never know what holes are going
to be discovered in the future. Look at the OpenSSL
Heartbleed mess, as an example…

Anyway, while most server-oriented Linux distros
are pretty secure out of the box, they still make
certain sacrifices for user-friendliness. In this tutorial
we’ll show you how to tighten key components in
a server system, including OpenSSH and Apache,
and demonstrate how you can mitigate potential
problems in the future with scanning tools and an
intrusion detection system.

In this case we’ll be using a vanilla installation of
Debian 7, as it’s arguably the most popular GNU/Linux
distribution used on servers, but the guides here will
be applicable to other distros as well.

A good Vim setup (see
last month’s cover feature)
provides syntax
highlighting for sshd_
config, making it easier to
read and edit.

SSH, APACHE & TIGER: MAKE
YOUR SERVERS SUPER SECURE
Lock down your Linux installations for maximum security
and keep one step ahead of crackers.

 TUTORIAL

86

MIKE SAUNDERS

HARDENING OPENSSH
It’s absolutely imperative that we start with OpenSSH.
Why that’s? Well, it’s almost certainly the way you’ll be
interacting with your server, unless you have the
luxury of logging into it directly via a physically
connected keyboard and monitor. For headless
servers, a good SSH setup is critical, because once
you have that out of the way, you can focus on the
other running programs.

1

OpenSSH’s daemon (server) configuration file is
stored in /etc/ssh/sshd_config, so you’ll need to edit
that (as root) to make changes to the setup. The first
thing to do is find this line:
PermitRootLogin yes

Change yes to no here to disable direct root logins
via SSH. This immediately adds an extra layer of
security, as crackers will have to log in with a regular

SERVER HARDENING TUTORIAL

www.linuxvoice.com 87

Here’s /var/log/auth.log (again with lovely Vim syntax highlighting) on a sample server,
with the red lines showing root login attempts by bots.

user account and password first, and then know the
root password as well. (Warning: make sure you have
a regular user account on the system first, because
if you only have a root account, you can lock yourself
out by changing this!)

Next, add a line like this to the configuration file:
AllowUsers mike graham ben
This restricts which users can log in via SSH; if you
have many accounts on the machine but only one or
two will log in, this is worth doing.

Next, change this line:
Port 22

22 is the standard SSH port, so it’s a good idea to
change this to something else (and make sure that
your router or firewall is also aware of the change
if you’ll be logging in from outside your network). A
random number like 1234 is fine here – it adds a bit of
“security through obscurity”. When you log in with the
ssh command now, you’ll need to add -p 1234 to the
end of the command.

Triple lock
Now, these three changes are useful enough on their
own, but together they add a major layer of protection
against automated cracking scripts and bots. These
are programs that attempt to break into your machine
by repeatedly trying username and password
combinations, many times a second, until they get
access. (If you have a net-facing machine with
OpenSSH that has been online for a while, look in
/var/log/auth.log and you’ll probably see many login
attempts from IP addresses around the world.)

The default OpenSSH configuration means that
these bots don’t have to do much work: they know
that the root account is available, and they know to
try on port 22. By disabling root access and switching
to a different port, the bots have to do a lot more
guesswork, trying random ports and usernames.
If you have a strong password, this makes it very
difficult for a bot to gain access.

Once you’ve made your changes to /etc/ssh/sshd_
config, you’ll need to restart the OpenSSH daemon:
service ssh restart

One enormously useful add-on for OpenSSH
is Fail2ban. This is a program that monitors
unsuccessful login attempts; if a certain IP address
fails to log in too many times, that IP is automatically
blacklisted. This again adds more work for crackers
and bots, as they can’t keep trying to log in from
the same IP address
and need to switch
periodically.

On Debian it’s a
simple apt-get install
fail2ban away, and it
starts up automatically.
By default it automatically blocks IPs (using the
system’s iptables command) for 600 seconds if they
have six failed login attempts. You may want to raise
the duration to something much longer, and also
allow IPs a few more attempts – you don’t want to
make a few typos when entering your password and
accidentally ban yourself!

Fail2ban’s main configuration file is /etc/fail2ban/
jail.conf. However, it’s a bad idea to edit that directly
(as your changes could be overwritten by system
updates), so copy it to /etc/fail2ban/jail.local and edit
that file instead. The bantime and maxretry options
towards the top control the default settings we
mentioned before, and you can also exempt certain
IPs from being banned in the ignoreip line.

But hang on – maxretry here at the top has a value
of three, yet we mentioned earlier that there must be
six failed login attempts for Fail2ban to take effect!
This is because there’s a special “[ssh]” section further
down that overrides the default settings. You’ll see
that Fail2ban can be used with other services than
SSH too. Once you’ve made you changes, restart the
program like so:
service fail2ban restart

Passwordless authentication

While good passwords are hard to crack, you can make it
almost impossible for nasty types to log in by disabling
password authentication, and using public/private key
pairs instead. On the machine(s) you use to log in, enter
ssh-keygen to generate the keys, then accept the defaults
for the file locations and the blank password. (If you
suspect someone else might get access to the machine
you’re using, you can set a password for the key.)

Now enter ssh-copy-id followed by the hostname or IP
address of the server; your public key will be transferred
over to that server. Try logging in and you should see
that you don’t need to specify a password any more.
If it all works, edit /etc/ssh/sshd_config, change the
PasswordAuthentication line to no, and restart OpenSSH.
(And never give away your private key – it’s ~/.ssh/id_rsa!)

“The default OpenSSH
configuration means that bots
don’t have to do much work.”

TUTORIAL SERVER HARDENING

www.linuxvoice.com88

Apache is telling the world its exact version details, both
in 404 pages and HTTP headers – but we can fix that.

HARDENING APACHE
The standard Apache web server configuration in
Debian is fairly secure and usable out of the box, but
can be made even tighter by disabling a few features.
For instance, try to access a non-existing URL in your
Apache installation, and at the bottom of the “404 not
found” screen that appears you’ll see a line like this:
Apache 2.2.22 (Debian) Server...

It’s best not to tell the world the exact version of
Apache you’re using. Vulnerabilities that affect
specific versions occasionally appear, so it’s best to
leave crackers in the dark about your exact setup.
Similarly, Apache includes version information in its
HTTP headers: try telnet <hostname> 80 and then
HEAD / HTTP/1.0 (hit Enter twice). You’ll see various
bits of information, as in the screenshot.

To disable these features, edit the Apache
configuration file; in many distros this is /etc/
apache2/apache2.conf, but in the case of Debian, its
security-related settings are stored in /etc/apache2/
conf.d/security, so edit that instead. Find the
ServerSignature line and change On to Off, and then
find the ServerTokens line and make sure it’s just
followed by Prod (ie the server will just say that it’s the
Apache “product”, and not give out specific version
information). After you’ve made the changes, restart
Apache with:
service apache2 restart

Apache also tries to be helpful by providing directory
listings for directories that don’t contain an index.html
file. This feature, provided by the Apache module
autoindex, could be abused by hackers to poke around
in your system, so you can disable it with:
a2dismod autoindex

Status report
Another initially helpful (but risky on production
machines) module is status: this lets you go to
http://<hostname>/server-status and get a bunch of
information about the configuration and performance.
In Debian it’s only possible to access this page from
the same machine on which Apache is running, but
this may vary in other distros, so it’s wise to turn. it off
unless you really need it using a2dismod status.

There’s a very useful module called ModSecurity,
which you can grab with a quick:
apt-get install libapache2-modsecurity

2

This is an exceptionally powerful module that can
protect against SQL injection attacks, cross-site
scripting, session hijacking, trojans and other risks.
After installation a configuration file is placed in /etc/
modsecurity/modsecurity.conf-recommended;
rename this and remove the -recommended part to
activate it. The rules for detecting attacks are provided
in /usr/share/modsecurity-crs/ – go there and have a
look inside the base_rules, optional_rules and
experimental_rules directory. Each .conf file inside
has some comment text explaining what it does, so if
you find something useful, copy (or symlink) it into the
/usr/share/modsecurity-crs/activated_rules folder.

Next, you’ll need to tell ModSecurity to use these
rules. Edit /etc/apache2/mods-enabled/mod-
security.conf and beneath the Include “/etc/
modsecurity/*.conf”” line, add these lines:
Include “/usr/share/modsecurity-crs/*.conf”
Include “/usr/share/modsecurity-crs/activated_rules/*.conf”

Now restart Apache to activate the configuration.
By default, ModSecurity only detects problems and
doesn’t act on them, logging its work to /var/log/
apache2/modsec_audit.log. This gives you time to
see how the rules will affect your site (and if they
could break anything). When you’re confident with
everything, make ModSecurity actively prevent
exploits by opening /etc/modsecurity/modsecurity.
conf and changing the SecRuleEngine option from
DetectionOnly to On. Finally, restart Apache.

HARDENING YOUR SYSTEM3

So that’s two of the most commonly used server
programs hardened: OpenSSH and Apache. What you
do from here depends on your particular setup, eg
whether your server will primarily be used for email or
databases. Still, there are many other things you can
do to enhance the general security of your Linux
installation. It’s a good idea to use an IDS, for instance

– an Intrusion Detection System, which keeps an eye
on critical system files and alerts you if they change.
This is a good way to see if someone has gained
remote access to one of your machines and is
tampering with configuration files.

Another useful program is an auditing tool. There’s
a good one in Debian’s package repositories, called

PRO TIP
ModSecurity is loaded
with advanced features,
so visit www.modsecurity.
org/documentation for
all the details.

SERVER HARDENING TUTORIAL

www.linuxvoice.com 89

Tiger gives a good
overview of potential
security flaws in your
setup, and the tigexp tool
provides more detailed
descriptions.

Tripwire can monitor any directory on your system, and give
you an instant report listing any files that have changed.

Mike Saunders is the author of The Haynes Linux Manual,
writer of the MikeOS assembly language operating system
and has been messing with Linux since 1998.

Tiger, and although it hasn’t been updated for a while,
it’s still useful for finding holes in your setup. Run:
apt-get install tiger

Doing this will also install Tripwire, the IDS we’ll be
using. Once the packages have been downloaded
you’ll be prompted for two passwords; these are
used to protect two keys that will be used to protect
configuration files (after all, auditing and file checking
tools aren’t much use if they can also be easily
exploited). Enter something memorable, and once the
configuration has finished, enter:
tiger -H

This will start an extensive security scan of the
system, and might take a few minutes depending on
the speed of your machine. (Don’t be alarmed if your
hard drive thrashes a lot during this procedure!) At
the end, Tiger will generate a HTML file and show you
exactly where it is stored in /var/log/tiger/. Open it up
(you could use the brilliant text-mode Elinks browser
if you’re logged in via SSH) to get a comprehensive
report that lists potential risks in your system.

These include: file permission problems; processes
listening on network sockets; poor configuration file
settings; accounts without valid shells; and more.
Tiger uses checksums to see if system files have
changed after their initial installation, so if an intruder
puts a trojan in a binary in /sbin, for instance, Tiger
will tell you in the report that it differs from the original
packaged version.

Every warning is accompanied by a code such as
acc022w. To get a detailed description of the warning,
enter this as root:
tigexp acc022w

It’s very helpful, as it often suggests fixes as well.
See the manual page for Tiger (man tiger) for other
report formats and extra options.

Advanced file checking
While Tiger is useful for checking executables against
their original packaged versions, Tripwire goes a lot
further and lets you spot changes all over the
filesystem. To set it up, enter:
tripwire --init

This creates a database of file information that
will be used when you perform a check. (You may
be prompted for one of the passwords you specified

when you installed Tiger earlier.) To see that the
database works, edit a file in /etc – you could add a
comment to /etc/rc.local for instance. Then run:
tripwire --check > report.txt

Now look in report.txt and do a search for “rc.local”
(or the file you changed). You’ll see something like this:
Modified:
“/etc/rc.local”

Nice and simple – it tells you exactly which files
have changed. At the start of the report you’ll see a
useful summary as well. There’s one problem in the
default setup, though: Tripwire monitors /proc, and
as that’s constantly changing (because it contains
information about running processes), it clogs up
the report with unimportant text. To fix this, we need
to change the Tripwire policy that defines which
directories it should monitor. Edit /etc/tripwire/twpol.
txt and find this line:
/proc -> $(Device) ;

Delete this line and enter the following to update the
policy database:
twadmin --create-polfile /etc/tripwire/twpol.txt

Now we need to rebuild the filesystem database,
so go into the /var/lib/tripwire directory and remove
the .twd file contained therein. Run tripwire --init and
generate a report, and you’ll see that /proc is no longer
included in the report.

Have a more detailed look inside /etc/tripwire/
twpol.txt to see what Tripwire can do, including
different types of warnings for different directories. If
you make a change to a system file and don’t want
Tripwire complaining in every report, you’ll need to
update the database. In /var/lib/tripwire/report, find
the most recent report (eg with ls -l). Then run:
tripwire --update --twrfile <report>

Replace <report> here with the most recent version.
The report will open in a text editor, and as you scroll
down, you’ll see changed files listed like so:
[x] “/etc/rc.local”

This means that the file is selected for updating in
the database, so you won’t be warned about it next
time. (If you still want to be warned about that file,
remove the x.) Save the file and exit the editor, and
after the next --check command you’ll see that the
complaint is gone.

PRO TIP
If you’d like us to run
a separate tutorial on
hardening another piece
of server software, drop
us a line at
letters@linuxvoice.com.

