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WHY DO THIS?
•  Take a trip back to the 

1940s
•  Search for large prime 

numbers (very slowly)
•  Use the logic that first 

inspired the Turing Test

Alan Turing’s work at GCHQ with Colossus
during WWII is well-known, as of course is the 
Turing Test, but those were far from his only 

involvements with early computing developments. In 
the late 1940s he was working on designing a 
stored-program computer (Colossus couldn’t store 
programs, and in any case was still very secret), and in 
1948 moved to Manchester where the Manchester 
Baby and Manchester  Mark I were being developed.

The Manchester Baby (aka the Manchester Small 
Scale Experimental Machine) wasn’t a full general-
purpose computer, but a small-scale test of Williams 
tube memory (cathode ray memory, using the charge 
well created by drawing a dot or dash on the tube). 
However, it is considered to be the world’s first 
stored-program computer, running its first program on 
21 June 1948, when it found the highest proper divisor 
of 2^18 (262,144), and took 52 minutes to run. Only 
two more programs were written for it: an amended 
version of this, and a program written by Turing to 
carry out long division.

The Baby was condensed, even primitive: only 32 
words of memory and 8 hardware instructions, 
covering only subtraction and negation (using these, 
addition can be implemented in software, as -(-x-y) = 
x+y). It had no paper-tape reader, so programs had to 
be entered painstakingly, a bit at a time, with a 
32-switch input device.

The Manchester  Mark I
Once the Baby was successful, the team (Frederic C
Williams, Tom Kilburn and Geoff Tootill, who had 
designed the Baby, together with research students 
DBG Edwards and GE Thomas) started work on the 
Manchester  Mark I (also known as the Manchester 
Automatic Digital Machine, or MADM). The  Mark I 
first ran in April 1949, with a program written to look 
for Mersenne primes. Max Newman wrote this 

version, but Turing later wrote an improved version 
known as the Mersenne Express.

The  Mark I had 40-bit words (longer than the Baby’s 
32 bits), and inspired by the success of the Baby, its 
main storage was Williams tubes. Initially, it had two 
Williams tubes each capable of holding two ‘pages’ of 
32 words (so four ‘pages’, or 128 words, in total), 
which was later increased to eight pages. It also had a 
magnetic drum as backup storage, which contained 
an extra 32 pages (later, 128 pages). Initially, to 
transfer data from the drum to the Williams tubes, the 
machine had to be stopped and the transfer initiated 
manually, but in the final version, this could be done as 
part of a program.

The drum itself consisted of a series of parallel 
magnetic tracks, which each held two pages and had 
its own read/write head, which read and wrote as the 
drum revolved. (A little reminiscent of a modern 
magnetic hard disk.) Latency depended on the drum 
speed, which was synchronised with the main 
processor clock.

The most significant aspect of the Mark I, though, 
was that it introduced index registers. An index 
register holds a memory offset, which is added to an 
instruction to create a full memory address. 
Effectively, it alters the instruction as the program 
goes along. It is useful for very rapidly stepping 

Panoramic shot of the 
Original Baby (copyright 
University of Manchester).

One of Turing’s projects while working on the Mark I was 
to write code to investigate the Riemann hypothesis, 
which has to do with the distribution of prime numbers.
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through memory addresses, such as to access an
array sequentially, or to handle looping – the index 
register allows you to add one (or two or…) to the 
memory location to access a new location each time. 
Index registers are very commonly used on modern 
computers.

Turing and code
The  Mark I had no assembly language; programmers
had to write their programs in binary form, encoded as 
a series of five-bit characters. The programmers’ 
handbook for the Mark II is available online at the 
Turing Archive, which illustrates the instruction 
conventions.

Each program instruction had 20 bits, of which 10 
bits held the instruction code and 10 bits the address. 
The initial instruction set had 26 instructions (later 30, 
when the magnetic drum transfer instructions were 
added). Initially, just as with the Baby, instructions had 
to be keyed in, but the Final version had a teleprinter 
with five-hole paper tape reader and punch. Turing 
created a base-32 encoding scheme, which meant 
that programs and data could be written to and read 
from the paper tape. This was largely based on the 
existing ITA2 five-bit teleprinter code, which maps 
each of the 32 binary values in a five-bit system to a 
character. One of the characters Turing changed was 
binary zero (00000), which he wrote as / and which 
was very common in programs, and 01000, which he 
wrote as @. Each 40-bit word was therefore 
represented as eight five-bit characters, so could be 
written (eg) ABC//F@G. Without an assembly 
language, programmers had to produce their 
programs in this format, translating binary 
instructions to ITA2, and were encouraged to 
memorise the ITA2 table. The  Mark I, like the Baby, 
also wrote its storage right-to-left, rather than 
left-to-right, so decimal one was 10000 rather than 
00001 as would be expected today. Negative 
numbers were represented with two’s complement 
(so the value of the most significant bit indicates sign: 
0 for positive and 1 for negative).

An early user suggested that the frequently seen 
////// in early programs was an unconscious 
reflection of Manchester’s wet weather – reminiscent 
of rain seen through a dirty window.

Simulating the Manchester Baby
There’s a great Java simulator of the Manchester
Baby available online at www.davidsharp.com/baby. 
It has a photo-realistic GUI so you can press the 
typewriter keys and flick various switches to set 
Williams tube bits just like the original team.

The red round typewriter keys each set a single bit 
of a particular line. They run top–bottom and left–
right; so the top-left key sets bit 0, and the bottom-right 
would adjust bit 39, but only 0–31 are connected.

The write/erase switch at bottom-right sets 
whether the typewriter sets the bit as 1 or 0. (The KSC 
switch at the bottom clears the store.)

The switches (labelled 1, 2, 4…) underneath the
typewriter choose the line to be edited, via binary 
coding. Line 0 is at the top of the screen; set all the 
switches up to access it, then flick switch 1 down for 
the next line down, switch 1 up and switch 2 down for 
the next after that, and so on. This is how you enter a 
program, a line at a time, into the store: pick the line 
and set each bit with the typewriter keys.

The KLC / KSC / KAC buttons at the bottom clear 
the current action line, the store, and the accumulator, 
respectively. The C, A, 
Sc red buttons at the 
bottom let allow you to 
look at the control, the 
accumulator, or the 
store, respectively. 
Flicking the CS switch 
to Run will run through all the stored program lines, 
until a Stop instruction is reached. To clear the Stop 
light, hit the KC button. This will also execute a single 
line at a time.

To get started, try out one of the sample programs 
from the menu. primegen.asc generates primes, and 
stores them in lines 21 and 22. Check out the View > 
Disassembler menu to see a translation of the dots on 
the screen. Note that line 0 is at the top of the screen, 
and that numbers are stored least-significant-digit-to-
right, so -.-... on the screen is 5 in decimal. To run the 
program, clear everything first, load it into the store 
from the menu, then flick the CS switch to run. Once 
the red stop light goes on, you have a prime stored in 
lines 21 and 22. Hit KC to clear the stop light, then flick 
CS up and down again to run again until the next stop 
and the next prime.

Next, we’re going to transcribe the first ever 
program into the simulator, and run that. There’s a 
useful online guide to the Baby from the Computer 
Conservation Society. This includes the structure of 
an instruction:
| Line #    |         | Function |          |
| 0 1 2 3 4 | 5 .. 12 | 13 14 15 | 16 .. 31 |

Williams and Kilburn with 
the original machine. 
(Copyright University of 
Manchester)

“The most significant aspect 
of the Mark I was that it 
introduced index registers.”
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Only the first five bits and bits 13–15 are used at all.
The line number is the line of the store to which the 
function is to be applied. The instruction set looks like 
this (CI is the Control Instruction, and A is the 
accumulator):
Function Binary (LSD right) 1948 mnemonic
Modern mnemonic Description
0 000 s,C JMP Copy content of 
store line s to CI
1 100 c+s,C JRP Add content of 
store line s to CI
2 010 -s,A LDN Copy content of 
store line s, negated, to A
3 110 a,s STO Copy content of A 
to store line s
4 001 a-s,A SUB Subtract content 
of store line s from A
5 101 As 4.
6 011 Test CMP Skip next 
instruction if content of A is negative.
7 111 Stop STOP Stop machine and 
light Stop bulb.

So, here’s that first program, based on the
reconstruction by Geoff Toothill and Tom Kilburn from 
Toothill’s lab book notes (www.cs.man.ac.uk/CCS/
res/res20.htm#e). It finds the highest factor of a given 
number (a), by starting with b = a - 1, and testing that 
and every smaller number until it succeeds. Early test 
cases included a = 19, a = 31 (both primes), a = 3141 
(final b = 1047), a = 4537 (final b = 349), and the full 
trial case of 2 . The final b value for that was 2 , and 
finding it took 52 minutes.

In the Instruction column, I’ve shown the notebook 
transcription with the 1948 handbook mnemonic in 
brackets. The Assembly encoding is a ‘fake’, in the 
sense that it will work with the simulator but no such 
thing existed for the original programmers. They had 
to work with binary, and I’ve given that in the binary 
column (least significant digit to right, as already 
mentioned, and 0..0 or 1..1 means fill in the rest of the 

line with 0s or 1s). Finally there’s a description of what
each instruction does.

An overview of the program stages is below. The 
lines in italics are lines from the lab book notes, which 
I altered to get the program to run, so leave them out 
when typing it in.
Line Instruction Assembly encoding Binary encoding
Description
0 - JMP 0 0..0 Empty line 
apparently needed by simulator, not present in notebook
1 -18, C (-18, A) LDN 18 01001 0000 0000 
010 0..0 Copy empty line to accumulator to clear it
2 -19, C (-19, A) LDN 19 11001 0000 0000 
010 0..0 Load +a into accumulator
3 Sub 20 (a-20, A) SUB 20 00101 0000 0000 
001 0..0 Trial subtraction: a - current b
4 Test CMP 00000 0000 0000 011 0..0
is difference negative?
5 Add 21, Cl (c+21, CI) JRP 21 10101 0000 0000 
100 0..0 Still positive. Jump back two lines (by adding -3 to 
the current instruction line)
6 Sub 22 (a-22, A) SUB 22 01101 0000 0000 
001 0..0 Difference is negative, so we subtracted too many. 
Add back current b.
7 c, 24 (a,24)STO 24 00011 0000 0000 110 0..0
Store remainder
8 - LDN 18 01001 0000 0000 010 0..0
Clear accumulator again using empty line. This wasn’t in the 
original notes but seems to be needed. (Note: line numbers from 
here do not match notebook.)
9 -22, C (-22, A) LDN 22 01101 0000 0000 
010 0..0 Load current b.
10 Sub 23 (a-23, A) SUB 23 11101 0000 0000 
001 0..0 Create next b = current b - 1.
11 c, 20 (a, 20) STO 20 00101 0000 0000 
110 0..0 Store next b.
12 -20, C (-20, A) LDN 20 00101 0000 0000 
010 0..0 Load negative next b.
13 c, 22 (a-22, A) STO 22 01101 0000 0000 
110 0..0 Store negative next b.
14 -24, C (-24, A) LDN 24 00011 0000 0000 
010 0..0 Load negative of remainder (see line 7).
15 Test CMP 00000 0000 0000 011 0..0
Is remainder negative? If not, it must be zero.
16 - STP 00000 0000 0000 111 0..0
Remainder is zero, so stop. I found this line 16 worked where the 
one below didn’t.
16.5 25, Cl (25, C) JMP 25 10011 0000 0000 
000 0..0 Original line in notebook which I couldn’t make work; 
remainder is zero, so jump to line [16]
17 23, Cl JMP 23 11101 0000 0000 000 0..0
Remainder is negative, so jump back to line 1 (number in 
location 23). In notebook this was line 2, but that left the 
accumulator un-zeroed and caused errors.
17.5 Stop STP 00000 0000 0000 111 0..0
Original line 17. This would be line 18 given the line number 
errors, but with the replacement line 16, it’s not needed.
18 init leave blank0..0 0 (blank)
19 init NUM -314111011 1011 1001 1..1 -a 
(value to be tested); here -3141

Here’s the Baby simulator 
with first (buggy!) version 
of our program loaded up. 

18 17
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20 init NUM 3140 00100 0100 0110 0..0 initial 
b (a-1); here 3140
21 init NUM -3 10111 1..1 -3
22 init NUM -314000111 1011 1001 1..1
-(initial b); here -3140
23 init NUM 1 10000 0..0 1
24 init leave blank0..0 0 (blank)
25 init NUM 16 00001 0..0 16 -- in notebook 
for use in line 16.5

Negative numbers are stored as two’s complement
(to produce this yourself, write the number out in 
binary, swap all the 1s for 0s and 0s for 1s, and add 1). 
I’ve added lines 0 and 8, affecting line numbering for 
lines 8–17, and have altered lines 16–17.

The program works like so:
Lines 0–2: Clear the accumulator, and load a (the 
value whose highest divisor we are trying to find).
Lines 3–5: Subtract b repeatedly until you reach a 
negative number.
Lines 6–7: The negative number means we’ve gone 
too far, so add b back again once. This means that the 
accumulator now contains whatever is left over (the 
remainder) when you divide a by b. Store that 
remainder.
Lines 8–13: Clear the accumulator again and get the 
next b value, by subtracting one from the current b. 
Store that as both positive and negative values for use 
in the next loop.
Lines 14–17: Load the remainder back again, and test 
it. If it’s zero, then we’ve found a divisor, and the 
program stops. If not, we loop back to the beginning.
Lines 18–25: Data values, both fixed and altered as 
the program runs.

To input this, you can input the binary directly with 
the switches, to really get a feel for how it was in 1948! 
Alternatively, you can use the Assembly encoding, by 
saving it in a file called babyfactor.asm with line 
numbers, as shown:
25
0  JMP 0
1  LDN 18
...

Load this from the file menu. The number at the top
is the number of lines of code in the file and is 
necessary. Arguably it’s cheating a bit, but bugfixing is 
much easier using assembly!

To run it, flick the ‘Run’ switch at the bottom to run 
the whole thing until the lightbulb lights (this may take 
a while for the given value of a). Once the lightbulb 
lights, read the b value from line 21 (use the 
Disassembler for ease!). The highest divisor is b+1 
(because b is decremented ready for the next time 
before the STOP line is reached). For the value of a 
given here (3141) this should be 1047.

Sometimes I found I had to hit the KC switch once 
before the Run switch. The simulator is a little 
temperamental; if you have problems, reload the 
simulator and start over. 

For debugging or to watch the program working, 
you can step through it one line at a time with the KC 

button. (In which case I recommend using smaller a 
and b values.) You could also check out Toothill’s 
article to see how they improved the program over 
time and make your own edits.

Further developments
The Manchester  Mark I was the basis for the Ferranti
Mark I, the first commercially available general-
purpose electric computer. It just beat out UNIVAC, 
which was handed to the US Census Bureau on 31 
March 1951; the first Ferranti  Mark I was delivered to 
the University of Manchester in February 1951. The 
oldest recorded computer music was played on a 
Ferranti, using its hoot command, and is available 
from www.digital60.org/media/mark_one_digital_
music.

One of the oldest computer games, a chess-playing 
program, was also written for the Ferranti by Dr Prinz 
in 1951, although it could handle only mate-in-two 
chess problems, not whole games. Turing had also 
been experimenting with chess computer programs, 
and wrote a program for a non-existent computer 
between 1948 and 1950. In 1952 he tried to 
implement it on the Ferranti, but the computer wasn’t 
sufficiently powerful. Instead, Turing simulated it by 
hand, taking around 30 minutes per move. The game 
was recorded, but the computer lost.

After the Manchester  Mark I first ran, neurosurgeon 
Sir Geoffrey Jefferson argued in 1949 that no machine 
could ever feel emotion or truly ‘think’. This 
undoubtedly had an effect on Turing’s thinking about 
machine intelligence. Turing explicitly disagreed with 
Jefferson, arguing that while this might be true now, it 
was not necessarily true for ever. The debate is, of 
course, still live today.  

Juliet Kemp is a programming polyglot, and the author of 
O’Reilly’s Linux System Administration Recipes.

Close-up of the working replica at the Manchester Museum of Science and Industry. 
Image CC-BY-SA ,Parrot of Doom.


