
TUTORIAL PYTHON QUIZ

www.linuxvoice.com

Quizzes are great fun – whether it's a friendly
game of Trivial Pursuit at Christmas or a pub
quiz down at the Dog & Duck, they're great

opportunities to show off your knowledge of trivia. In
schools around the world, quizzes are used to test the
learning of the students and to consolidate the
learning experience.

Creating a quiz is a great way to learn more about
structure and control of a program. When writing the
code you need to understand how the program will
flow: if the player answers the question correctly they
progress through the game, but incorrect answers
inhibit their progress. The use of programming logic
enables the creator to set the pace and the rules for
the game while testing their own programming skills.

For our game we will create a quiz with Python-
related questions, and to enhance the game we are
going to add two libraries to our code:

EasyGUI is an easy way to create a graphical user
interface (GUI) for our Python program.
Pygame is a library full of great tools that can
enable you to build games and multimedia content.
For our game we will use Pygame to add music and
sound effects to our project.

Setup
This project can be created using any computer,
including a Raspberry Pi. We're using Linux Mint 17,
which is based on Ubuntu. We'll also need the Idle
development environment, so to install each of the
packages open a terminal and type in the following.
To install IDLE
sudo apt-get install idle
To install EasyGUI
sudo apt-get install python-easygui
To install Pygame
sudo apt-get install python-pygame

Once these have been installed, you will need a
copy of the project files from https://github.com/
lesp/LinuxVoice_PythonQuiz. You can also download
a Zip archive containing all of the project files from
https://github.com/lesp/LinuxVoice_PythonQuiz/
archive/master.zip.

Idle is an easy-to-use Python editor with an
uncluttered and minimalistic interface, enabling you
concentrate on writing the code rather than being
distracted by fripperies. Idle comes in two versions,
one covering 2.x and the 3.x series of Python. For this
tutorial I'm using the version for 2.x.

When Idle first opens, it presents you with a shell
interface that looks very similar to the image bottom
right. A shell is an environment where you can
prototype new ideas and interact with running
programs. The shell is not an ideal environment to
write a large program, as it normally works on a line by
line basis. If you wish to write much larger programs,
which we do, then the best place to work is inside the
editor, and to use the editor all you need to do is go to
File > New to open a fresh blank editor window.

Plan your logic
Let’s open our project in Idle, using the File > Open
dialog to navigate to the location where you extracted
the project files, so open the file labelled LV_Quiz.py.

Once again we will illustrate the intended actions of
the project via pseudo code, which is a tool to write
the flow of a program in plain English. Here is how we
envisage the program will flow.
1 Intro asking the player if they would like to play

the quiz
2 If the player wishes to play
3 Reset the score to zero
4 Tell the player their current score
5 Ask the first question
6 If the player answers correctly
7 Add 1 to their score
8 Play jingle
9 Show a dialog box congratulating the player and

their current score
10 Else if the player answers incorrectly
11 Play jingle
12 Show a dialog box advising the player of a wrong

answer
13 Repeat question twice more to allow player to

Here's our finished quiz application, written in Python and
with nice clickable buttons courtesy of EasyGUI.

WRITE YOUR OWN
PYTHON QUIZ
Les Pounder imports functions, defines variables and lists and
hones his quizzing skills – all in Python!

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Program the lazy way, by

re-using other peoples'
code in your projects.

• Use lists, variables and
functions to control a
logic flow.

• Display your vast
quizzing knowledge to
friends and family.

PYTHON QUIZ TUTORIAL

www.linuxvoice.com 79

As well as the shell, Idle
has a power editor that
is more than capable
of handling any size of
project.

answer correctly
14 The question structure continues for three more

questions before moving on to the end sequence.
15 Play the intro music
16 if the players score is less than , show a dialog box

that commiserates the player and shows their final
score.

Else
17 Show a dialog box that congratulates the player and

shows their final score.
In order to better understand the project we’ll break

the code down into sections and step through each
section, so let's take a closer look at the code.

Imports
In Python you can easily add extra functionality to any
project via the use of libraries. Libraries come in all
shapes and sizes, from the simplest, time (which
enables you to import various time and date
capabilities into your program) to the most complex,
such as numpy and scipy which are used by NASA
(and which we used in LV003 to hunt for comets –
www.linuxvoice.com/comet-python).

As with many other Python projects, we first have
to import a few extra libraries to further enhance our
project. For this project we will import three libraries,
and to do that we use the following code, which is
included at the top of our project.
from easygui import *
import time
import pygame

As you can see, we've imported libraries into our
code in two different ways. The most common is
used twice and that is:
import <name of library>

In order to use any of the functions contained inside
of a library imported in this manner we must call the
library and the function by name. For example, if we
want to use the sleep function from the time library,
we would do that like this
time.sleep(1)

This is the most traditional way of importing
libraries and is a great practice to follow, but there is
another way, and you can see that we have imported
the EasyGUI library in a different way:
from easygui import *

This changes the previously used method of using
functions from a library. Using this method to import
the library means that we can omit the leading library
name and just call the function.
msgbox(arguments for this function)
This can be applied to many libraries, and is really
useful when working with those new to Python.

There's another method of importing a library, which
is to rename a library so that it is easier to use.
import time as t

t.sleep(1)
As you can see, we have renamed the time library to

t, which makes it quicker to use. This practice is quite

common with Raspberry Pi-based projects, as the
Python library RPi.GPIO is rather awkward to type and
is generally renamed to GPIO or io.

Starting Pygame
Pygame is a library full of great tools to create games
using Python. With Pygame you can create sprites,
characters or objects in the game world, and import
video, audio and images into your projects. Entire
games can be created using this library, for example
the website https://pyweek.org showcases many
games made in Python including a rather good
version of the original Super Mario Bros.

For our quiz we're using the Pygame library to add
music and sound effects when certain conditions are
met. These audio-based methods of output add a rich
atmosphere to a game and provide audio stimulus to
the player – think of the jingle you get when you
collect coins in Mario or rings with Sonic.

We imported the Pygame library earlier but now we
need to start it. To do that you need to initialise the
library like so:
pygame.init()

We then need to initialise the mixer, which controls
audio in Pygame.
pygame.mixer.init()

This is all the setup that Pygame requires at this
time. Later in our project we will set up a series of
functions that will handle the playback of audio.

EasyGUI has an expansive
array of many different
dialog and menu types.
The egdemo() function
does a great job of
showing them all.

TUTORIAL PYTHON QUIZ

www.linuxvoice.com80

Pygame is an impressive and expansive library and in
this tutorial we haven’t even scratched the surface of
what it can do. If you would like to know more about
what Pygame can do (and we strongly reccomend it)
head over to their website www.pygame.org.

Functions
For our quiz we use three functions: intro(), win() and
lose(). These three functions were created to handle
playback of audio at key points in the game.

But what is a function? Well, a function is a way of
executing a block of program code just by calling its
name. Let's take a look at one of our functions
def intro():

 intro=pygame.mixer.music.load('intro.mp3')
 pygame.mixer.music.play(1)

We start with defining the name of the function; in
this example it's intro(). Next we create a variable
called intro, which will contain the output from loading
the mp3 intro music into Pygame. Finally we instruct
Pygame to play the music that has been queued into
the mixer, but to only play the music once. Functions
are very powerful and can be expanded into much
more versatile tools.

Variables
Variables are an important part of many programming
languages, and Python is no exception. Variables are a
temporary method of data storage, and can store
many different types of data for reuse in a project. For
example, we can use a temperature sensor attached
to a Raspberry Pi to read the temperature and store
the value in a variable, or we can store a player's
name. Variables are flexible enough to store anything.
In our project we use a few different variables to
contain the player's score and location of external
image files – here are a few examples.
score = 0
logo = "./images/masthead.gif"
start_title = "Welcome to Linux Voice Python Quiz"

Firstly, our score variable is used to track the
progress of the player and is updated each time
the player answers a question correctly. logo and
start_title are two variables that store a string of text:
in logo's case the location of the Linux Voice logo for
the intro dialog box, and for start_title the text that is
displayed at the top of the intro dialog box.

Lists
Another method of storing data in our Python project
is to use a list. A list is also known as an array in other
programming languages, and by using a list we can
store lots of individual items and use them in our
code. In our code we use a list to contain the possible
answers to questions – for example, we use a list
called play to contain the answers “Yes” and “No”
play = ["Yes","No"]

All list contents are indexed, so individual items can
be recalled from the list. The first item in a list is

Comparison operators

One of the key parts of a quiz is making sure that the player
has the right answer, and the mechanism to do that is by
comparing the answer given to the expected answer. Below
is a table of the most common comparison operators in
Python, with an example of how to use each of them in your
next project.

Operator Description Example

== Checks if the value
of two operands
are equal or not;
if values are not
equal then condition
becomes true.

q1 == “Float”

!= Checks if the value
of two operands
are equal or not;
if values are not
equal, then condition
becomes true.

if game_start != "No":

> Checks if the value
of the left operand
is greater than the
value of the right
operand; if yes, the
condition becomes
true.

if score > 3:

< Checks if the value
of the left operand is
less than the value
of the right operand;
if yes, the condition
becomes true.

>= Checks if the value
of the left operand
is greater than or
equal to the value of
the right operand;
if yes, the condition
becomes true.

if score >= 2:

<= Checks if the value
of the left operand is
less than or equal to
the value of the right
operand; if yes, the
condition becomes
true.

if score <= 3:

if score < 1:

Get the question right and the quiz plays a sound, adds 1
to your score and moves on to the next question.

PYTHON QUIZ TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

Project files
All of the files used in these projects are available via my
GitHub repository. GitHub is a marvellous way of storing
and collaborating on code projects. You can find my GitHub
repo at https://github.com/lesp/LinuxVoice_Pibrella.

If you're not a Github user, don't worry you can still
obtain a zip file that contains all of the project files. The Zip
file can be found at https://github.com/lesp/LinuxVoice_
Pibrella/archive/master.zip.

always index 0. For example, if we wished to print the
first item from the play list, which is “Yes”, then I would
do the following.
print(play[0])

EasyGUI guide
Easygui is a simple method of generating a graphical
user interface (GUI). EasyGUI was created by Steve
Ferg, who left the project in March 2013. It is now
under the maintenance of Alexander Zawadzki, who is
keeping the project alive, but the codebase is frozen
with little chance of upgrade. Don’t let this put you off
though – it's exceptionally easy to use.

Using EasyGUI you can easily add a GUI to most
Python projects. If you would like to see the full library
of GUI elements you can use the inbuilt demo
function, remembering to import the library to start
with easygui.egdemo().

For this project we're using three different types of
GUI elements.

Buttonbox To ask if the player would like to play.
Choicebox To ask questions and capture answers
from the player.
Msgbox To update the player on their score.
EasyGUI has an easy-to-learn syntax which is

common across all of the many different types of GUI
elements it provides. Here for example is the syntax to
create a message box.
msgbox(title=”Title of dialog box”,msg=”Message to the
player”,image=”Location of the GIF”)

Providing all of this information each time can be
long winded, so to make things a little easier we have
created variables that store the various details for
each question.

Question structure
Each question is inside a loop that will only repeat if
the player answers the question incorrectly, and the
player will only have three chances to answer each
question before they are automatically progressed to
the next question. Using a for loop with a range of 0 to
3 we can have the question repeated three times
unless the loop is broken by a correct answer.

Under the for loop you can see the question being
formed using variables such as msg and title, and
there's also a list labelled q1choices, which contains
the potential answers. All of these variables and the
list are then used to create the contents of our first
question. To ask the question we first create a variable
to store the answer chosen by the player (in this case

the variable is q1). Here is the code
#Question 1
 for i in range(0,3):
 msg = "What type of number is 1.4?"
 title = "Question 1"
 q1choices = ["Integer","Float","Very small"]
 q1 = choicebox(msg,title,q1choices)

Now that we have asked the question we need to
use conditional logic to compare the answer given to
the correct answer. To do this we compare the
variable q1 with the hard-coded answer “Float”. If the
answer given matches the expected result then the
win() function is called, which plays the audio. We
then increment the score by one point. Finally we set
up the variables necessary for our GUI dialog box.
Once these steps are complete we break this loop and
move on to question 2.
 if q1 == "Float":
 win()
 score = score + 1
 correct = ("Well done you got it right. Your score is
"+str(score))
 image = "./images/tick.gif"
 msgbox(title="CORRECT",image=image,msg=correct)
 break

But let's say that our player gets this question
wrong – in this scenario we would move to the else
section of our logic. This triggers our lose() function to
play audio and then creates two variables that will
contain the contents of a dialog box informing the
player that they chose the wrong answer.
 else:
 lose()
 wrong = "I'm sorry that's the wrong answer"
 image = "./images/cross.gif"
 msgbox(title="Wrong Answer",image=image,msg=wrong)

Expansion activity
Our quiz is playable, but the code is quite
large, with lots of repetition. How can we
enhance our code so that we have a much
smaller project? The answer may be to use a
function with arguments.

Earlier we used functions to control
the playback of audio in the quiz. These
functions took no arguments and simply
ran when executed. A function that takes
an argument expects to see one or more
additional pieces of information before it
runs. Here is a basic example of defining a
function that takes an argument.
def func(x,y):
 print(x*y)

To use this function, we call the function
by its name and then substitute the x,y with
the values that we wish to use, as so.
func(2,3)

This will then print the answer to the
equation 2 * 3. For our project we can create
a function for each of the different types of
EasyGUI elements used, and then use the
arguments to dictate what is displayed.
def msg(title,msg,image):
 msgbox(title=title,msg=msg,image=image)

With this function created we can now
test to see if it works.
msg(“This is the title”,”This is a message to the
player”,”./images/image.gif”)

The above code will set the title to be
“This is the title” with a message reading
“This is a message to the player” and the
location of the image is used to grab the
image and display it in the dialog box.

So using this new function syntax, do
you think that you could make a function for
each of the dialogs made in our quiz?

