
www.linuxvoice.com

FEATURE SLACKWARE

26

Back in the day, before there were friendly GUI
installers; before pretty became a feature, and
before a Linux-based OS conquered the world

through the magic of smartphones, there were only a
handful of Linux distros. Most of them have fallen by
the wayside over the years – who remembers
Yggdrasil, Caldera or Linspire?

There is one survivor from those days though, and
you can try it today: Slackware. Slackware is simple.
By that, do we mean that it’s is easy to install, set up
and use? If you charge in armed only with enthusiasm,
then the answer is probably no. But if you have some
experience with Linux, are prepared to read the
documentation and invest enough time in
understanding it, then Slackware can be easy in all of

these ways and give you a rock-solid, modern
operating system that’s under your full control.

The simplicity of Slackware is in how it operates,
the way packages are handled and how key parts of it
are written and configured using text files. When it is
set up, it can be as easy to use as any other distro
with a full-fat desktop like KDE, or as leet as you like
with a simple tiling window manager.

If you’ve played around with other Linux distros or a
BSD variant and found yourself intrigued on the
command line, then you shouldn’t find Slackware too
challenging. With Slackware, it really pays dividends to
spend time with the READMEs before embarking on a
serious endeavour such as installing it. As with many
OSes, a good way to start experimenting with

Forget your Ubuntus and Fedoras – true
Linux Nirvana comes from following the way
of Slackware, according to Andrew Conway.

JOIN THE
SLACK SIDE

SLACKWARE FEATURE

www.linuxvoice.com 27

Slackware is to install it in a virtual machine using
software such as VirtualBox or Qemu.

A great resource for Slackware is docs.Slackware.
com. At the top of the main page you’ll see a link to
“Slackware installation” – read that page and you’ll get
a detailed and clear description of how to install it.
We’re not going into installation details here, but a
crucial point to remember is that it’s recommended
that you do a full installation. This may seem irksome,
especially if you’re used to starting with a minimal
package set and just adding in what you need, but
there’s a good reason for it, which we’ll come to later.
Besides, only 8 GB is required, which even for a
five-year-old computer is probably a fraction of your
available hard drive space.

The mythical Slackware package manager
There’s a myth that Slackware has no package
manager. Like all myths it has some basis in fact, in
that Slackware doesn’t come with a GUI package
manager nor one that automatically handles
dependencies, though unofficial tools such as
slapt-get do exist.

If you are used to Yum, Pacman, apt-get, or
Ubuntu’s GUI tools, we can’t blame you for finding this
off-putting, but there is a reason behind it. In fact,
Slackware users actually grow to appreciate the
advantages of handling dependencies manually. And
no, it’s not a form of spiritually cleansing masochism:
Slackware users do not wear horsehair shirts, nor do
they birch themselves at daybreak. The reason behind
the lack of automated dependency checking is –
guess what? – simplicity. Let us explain.

Slackware is designed so that with a full installation
you will be provided with tools to address most tasks
you’d expect from a modern OS, but even more

importantly, most of the libraries you’ll need will be
installed. So, if you install package ‘foo’, it’s likely that a
dependency, say, library ‘lib-bar’, is present already.
Contrast this with Arch, say, where the initial minimal
install is likely not to contain ‘lib-bar’ and Pacman will
have to pull in ‘lib-bar’ and all of its dependencies too.
That’s no criticism of Arch – in fact Arch is often a
loyal Slacker’s second distro choice because it offers a
different kind of simplicity, one that starts from
minimalism.

I’ve been using Slackware for nearly 20 years for all
kinds of things (scientific computing, audio, software
development, gaming) and only once did I have a
problem with a package having so many
dependencies that it put me off an installation
(Pandoc’s dependency on Haskell was the culprit). It’s
not uncommon that there are no dependencies to
install, and when there are it’s often just one or two. To
illustrate the point, these are a few of the packages I
have installed that are not included in Slackware 14.1:
LibreOffice, Steam, Audacity, VirtualBox, TeamViewer,
OwnCloud desktop client and NetBeans. Together they
only required three
packages to be installed
as dependencies
(including
dependencies of
dependencies).

If you accept that
manual dependency resolution in Slackware isn’t as
big an overhead as you’d expect, then you can start to
appreciate the advantage it brings: understanding your
system. Here’s an example. Recently I got a Dell XPS
13 with Ubuntu 12.04 LTS pre-installed and I grew to
like it in many ways in the six months I used it. But, on
one horrible morning when I had some urgent work to
do, it refused to boot. I ruled out a hardware problem,
and after poking around on the recovery console, I
guessed that some package I recently installed had
trashed the X display drivers. Reinstalling the Ubuntu-
desktop package and the X drivers seemed to fix it,
but many hours were lost. I never really understood
what caused the problem – my best guess was that it
was either a dependency of Steam or a 3D

“Slackware users do not wear
horsehair shirts, nor do they
birch themelves at daybreak.”

Slackware may be over 20
years old, but that doesn’t
mean users are stuck
in the past – here it is
running KDE 4 and a bunch
of modern applications.

Tux the penguin is depicted here with J. R. “Bob” Dobbs,
founder and prophet of the Church of SubGenius.
It’s a bit like how a Jedi uses The Force.

www.linuxvoice.com

FEATURE SLACKWARE

28

Or perhaps you’ve found a file such as /usr/bin/
scareyvirustrojon.nasty and wonder where it’s from –
this will tell you:
grep nastyvirus /var/log/packages/*
and hopefully jog your memory into realising it’s part
of that Humble Bundle game you installed a while ago.

Updated Slackware packages come out soon after
upstream maintainers release a security fix. For
example, when I read about the infamous Heartbleed
bug in a tech news RSS feed, I found there was already
an updated package from Patrick Volkerding. When an
updated package is released, it’s simple enough to
download the new tarball and install it with
upgradepkg foo. However, if a number of updated
packages arrive at the same time, it’s much simpler to
use the slackpkg tool instead, which looks much like a
command line package manager from other distros, ie:
slackpkg update
slackpkg upgrade-all

The first line updates the information on the
packages, a bit like apt-get update, and the second
line brings up a Curses menu where you can choose
which upgrades to apply. Slackpkg is shipped with
Slackware and it only works with packages in the
official distribution. However, there is a plugin for it,
called slackpkg+, that enables you to work with a
number of other repositories, such as long-time
Slackware contributor Eric Hameleers’ packages and
slacky.eu.

Another key difference with Slackware is that
upstream sources, including the Linux kernel itself, are
rarely patched. Yet again, it’s for simplicity’s sake. It’s
simpler for the maintainer (and remember, Slackware
really has only one full-time maintainer) but it’s also
simpler for a user who wishes to alter the system by
installing, say, a different version of PHP, or even the
kernel itself. It’s also a bonus for upstream, because if
they get feedback from a Slackware user they can be
reasonably confident that the bug wasn’t introduced in
a patch.

SlackBuilds
Slackers like to know where their packages come
from – personally I only install packages from three
sources: official; Eric Hameleers’ repositories; or those
I build myself. A Slackware package is usually created
with a SlackBuild script, which is a Bash script that
takes the source (or a binary distribution) and turns it
into a Slackware package. For example:
wget http://SomeTrustedSite.org/foo.tar.gz
tar xvf foo.tar.gz
cd foo
wget http://HomeOfFoo.org/downloads/source/foo-1.6.tar.gz
./foo.SlackBuild
installpkg /tmp/foo

First we get a tarball that contains the SlackBuild
script and other related files (or we could just write a
SlackBuild ourselves). We then extract it and cd into its
directory, then download the source code. At this point
I’d usually stop to glance over the SlackBuild so I can

sbopkg is an efficient
Curses-based tool for
browsing and working
with scripts from
SlackBuilds.org.

“Another key difference with
Slackware is that upstream
sources are rarely patched.”

visualisation package that I had recently installed
using the Software Centre.

Now, Slackware is not magic. I have trashed
Slackware systems too, but when I did I could usually
see the trouble ahead, and could decide to leave well
alone until after some important work deadline was
behind me. And if I did take the plunge and trash the
system I’d know exactly what I’d done and so could fix
it fairly easily.

Simple package handling scripts
I rely on a trio of Bash scripts provided with Slackware:
installpkg, upgradepkg and removepkg. These scripts
do what they say, and take one argument, which can
be either, the name of the package, foo, or the full
filename, foo-1.6-i686-LV.txz. There are also a
number of options that are explained in the provided
man pages, but if you want to know exactly what’s

going on you can read
the scripts yourself
with less /sbin/
upgradepkg.

The installpkg script
extracts the tarball in
place in the filesystem

tree (/usr, /etc, /lib and so on), and then, if a file called
doinst.sh exists, it’s run for post-installation tasks.

The upgradepkg script is simple too – it installs the
new version of the package specified, say foo-1.6,
then checks to see what files were present in the
foo-1.5 package but not in 1.6, and removes them.

If you want to find out what packages you’ve got
installed, all you need do is look in the /var/log/
packages directory. Every installed package will have a
text file present with the same name of the original
package file, but without the extension, eg foo-1.6-
i686-LV. The file will list every file in the package with
its full path. In the spirit of being *NIXy, you can then
examine the status of packages using file and text
commands. For example, if you’re wondering if
package foo is installed and, if so, what version, where
from and when you installed it, just do
ls -l /var/log/packages *foo*

SLACKWARE FEATURE

www.linuxvoice.com 29

see what it’s going to do. Then the script is executed
and the package is installed. Whenever it’s available, I
also like to check the GPG key or MD5 sum of
downloaded files.

At simplest, a SlackBuild script for something that
uses the common autotools build method could be
tar xf foo-1.6.txz
cd foo-1.6
./configure
make
make install DESTDIR=/tmp/foo-1.6
cd /tmp/foo-1.6
makepkg /tmp/foo-1.6-x86_64-LV.tgz

The first few lines should be familiar. The fifth line
copies the build products (binaries, libraries, icons etc)
to the /tmp/foo-1.6 directory, within which you’ll
typically find directories such as /usr/bin, /etc, /lib/
and so on, corresponding to where the installed files
should end up. The final two lines will make the
package. DESTDIR isn’t always supported, but usually
there’s an equivalent parameter that does the job.
Notice that the package file name is conventionally of
the form PACKAGENAME-VERSION-ARCHITECTURE-
BUILD. The last bit is useful to keep track of where a
package has come from and who built it.

Usually SlackBuilds have extra lines to standardise
them and make them easier to update, eg $VERSION
could be defined up front, so that the version number
1.6 doesn’t have to be scattered throughout the script.
Other common additions to scripts are to remove
extraneous files left over from the build process, copy
README files into the package, add path prefixes
such as /usr, and even patch the source. The rule of
thumb is to stay close to what upstream provided.

The lazy way to slack
I rarely write my own SlackBuild scripts these days
– in fact I rarely even run SlackBuild scripts myself. My
preferred modus operandi involves two excellent
resources from the Slackware community.

The first is SlackBuilds.org, often abbreviated to
SBO. This is a website with a repository of scripts for
packages that are not present in the full Slackware
distribution. Each script has its own page with a link
for downloading the SlackBuild tarball that includes
the SlackBuild script itself with a README and an info
file with information about the source, such as
download link and MD5 sum. SlackBuilds is an
excellent resource and relies on community
contributions, but is moderated by a small team who
ensure that standards are kept high and that no silly or
malicious SlackBuild scripts are admitted – since
SlackBuilds are often run as root, you really don’t want
one to have rm -rf / lurking inside it. It’s also worth
noting that all the scripts on SlackBuilds.org will
assume a full Slackware installation.

The second essential resource is sbopkg, which is a
Curses-based tool that makes it easier to work with
SlackBuilds.org. It allows you to search for a package
by any fragment of its name, and once you’ve found it,

you can peruse the concise README and then check
to see what dependencies it has. If there are none,
then a key press tells sbopkg to download the source,
check MD5 sums, run the SlackBuild and install the
package. If there are dependencies, you can add the
current package to a queue for later processing, and
then search for each dependency, adding them to the
queue as you go. Once you’ve queued them all up, hit a
key and it’ll process the entire queue.

If hunting down dependencies really does become a
chore, you can use a tool called sqg to generate queue
files which effectively turns sbopkg into a package
manager with automated dependency resolution.

The future?
Slackware has been around for a while, and it shows
no sign of going away anytime soon – but what if
Patrick Volkerding decided to abandon it, or he
became unable to continue? Most of the main distros
aren’t reliant on one person, and even if, say, Red Hat
Inc went under, it’s probable that Fedora would
continue, just as Mageia was forked from Mandriva
after its company got into trouble. It’s likely that
Slackware too would continue in some form with
volunteers from the community stepping up, but the
distro would inevitably change in character because
Slackware is imprinted with Patrick’s personality.

I’ve spent serious time with Ubuntu, CentOS, Mint,
Red Hat, Arch and Tiny Core, and learned different
things from each of them, and can see how they suit
others’ needs, just as Slackware suits mine. Slackware
is like a very cleverly designed machine in which you
can see how all the various intricate parts work
together. Not only can you gain a deep insight into
GNU/Linux by spending time with Slackware, but you
will feel in control of your software and hardware. In
an era in which we have good reason to believe that
our consumer electronics, in sealed units with
proprietary software, may be used to spy on us, this
is especially reassuring.

Old yet up-to-date
As Linux emerged from infancy, Slackware
became the most popular distribution by
proving its worth as a more reliable fork of
the now defunct Soft Landing System (SLS)
distro. Debian was released slightly later in
1993 and, in contrast to Slackware, evolved
with a democratic and distributed
philosophy, and now has an impressively
large community and has spawned many
more derivatives, most notably Ubuntu.
There are quite a few distros based on
Slackware, including Slax, Vector Linux
Zenwalk and Salix – each of them adding
different things, such as a live CD/USB
version and more featureful (but more
complicated) package managers.

Slackware has just one professional
maintainer, Patrick Volkerding, who draws
his living from subscriptions, merchandise

and donations. It does have a strong
community, which can be found on IRC, but I
generally seek help and offer advice on the
forums at LinuxQuestions.org. A few
community members are worthy of mention, in
particular Eric Hameleers (aka Alien Bob) and
Robby Workman, who you might call core
contributors to Slackware, and Stuart Winter
(aka drmozes) who maintains the ARM port.

Slackware is on version 14.1, released in
November 2013 with the 3.10.17 kernel in 32-bit,
64-bit and ARM editions, and UEFI hardware
installation is supported. There’s also an elegant
multi-lib (ie supporting both 32- and 64-bit)
solution maintained by Eric Hameleers.
Releases have averaged at about once per year
recently, but if you feel a bit more bleeding edge,
you can keep updated to Slackware-current
which will eventually become the next release.

