
CORETECHNOLOGY

www.linuxvoice.com64

Tver the last three months our look at
core Linux technology has focussed 
mostly on inter-process 

communications – pipes and sockets. This 
month we’re going to turn our attention to 
the filesystem. My interest here is not about 
how to access and manage files from the 
command line (ls, mv, rm, cp, chmod… that 
kind of thing). I’m assuming you know all 
that. Rather, I want to take you behind the 
scenes of the filesystem and view it through 
the eyes of a programmer.

The lowest level at which you can read 
and write files is by using the four system 
calls open(), read(), write() and close(). Let’s 
dive straight in with an example. This simple 
file copy program is written in C:
 1. #include <fcntl.h>
 2. #define BSIZE 1024
 3.
 4. void main()
 5. {
 6.   int fin, fout;
 7.   char buf[BSIZE];
 8.   int count;
 9. 
10.   fin  = open(“foo”, O_RDONLY);
11.   fout = open(“bar”, O_WRONLY | O_CREAT, 0644);
12.
13.   while ((count = read(fin, buf, BSIZE)) > 0)
14.     write(fout, buf, count);
15.
16.   close(fin);
17.   close(fout);
18. }

Down at the system call level, file
descriptors (or file handles – call them what 
you will) are plain integers. We declare two 
of them (one for input, one for output) at line 
6. We allocate a modest buffer at line 7; this 
will be used to store the data as it is being 
copied across. At lines 10 and 11 we open 
our input and output files. In each case we 
get back descriptors that refer to the open 
files. For simplicity we’ve just hard-coded the 
filenames here; more realistically, you’d take 
them from the command line. The 
parameters passed at line 11 say that we 
want to write to the file and that we want to 
create it if it doesn’t exist. The mysterious 
octal value 0644 specifies the permissions 
that will be assigned to the file as it is 
created. You may recognise them more 
easily written as rw-r--r--. Notice that you 
don’t get to specify the owner of the file – it 
will be owned by whoever runs the program. 
You don’t get a choice.

Coding back to front
All the real work happens in the loop at lines
13 and 14, and there’s a lot packed into 
these two lines of code. Line 13 needs 
reading ‘inside-out’; it goes something like 
this: Read the next BSIZE bytes from the 
input file into the buffer. Record the number 
of bytes you read in the variable count. Test 
the value of count: if it’s greater than zero, 
write however many bytes you got back out 
to the output file (line 14). To illustrate how 
this works, suppose the input file was 2500 
bytes long. Then line 13 would execute 4 

Filesystem: what’s going on?
Take a programmer’s-eye view of the Linux filesystem.

CORE
TECHNOLOGYA veteran Unix and Linux 

enthusiast, Chris Brown has 
written and delivered open 
source training from New Delhi 
to San Francisco, though not on 
the same day.

times, returning count values of 1024, 1024,
452 and 0. The zero means we’ve reached 
the end of the file. This ‘perform an action, 
capture the result, and test it’ is a common 
idiom in C; indeed, any C programmer worth 
his salt hides all the really important parts of 
his programs inside the test predicates for 
if() and while() loops in this way.

After we fall out of the loop (line 15) we 
are careful to close both file descriptors. 
This will ensure that any data buffered by 
the kernel is actually written to the disk. In 
this example the progam terminates 
immediately afterwards and any open 
descriptors will be implicitly closed. But if the 
program went on to process lots of other 
files we would eventually run out of file 
descriptors if we failed to close the ones 
we’d finished with.

Now I realise that some of you may think 
that this system-level code looks like awfully 
hard work. Well, maybe it’s because I was 
weaned on a diet of assembly languages as 
a youngster, but I actually quite enjoy 
programming at this level. Short of micro-
miniaturising yourself and crawling out over 

Dive under the skin of your Linux system to find out what really makes it tick.

A Ken Thompson quote
There was originally a system call named creat() 
that created a new file. Indeed there still is, but 
it’s seldom used since you don’t usually want 
to create a file unless you’re about to write to it, 
and files can be created by the open() call, as 
our file copy example shows. But there’s a nice 
story about creat. Apparently Ken Thompson 
was once asked what he would do differently 
if he were redesigning the Unix system. His 
reply: “I’d spell creat with an e”. (See The Unix 
programming environment by Kernighan and 
Pike, p204). The implication being, of course, 
that he’d got everything else right.

“Short of crawling over the disk with a tiny magnet, 
this is as close as you can get to the metal.”



CORETECHNOLOGY

www.linuxvoice.com 65

Applications can choose to access files through the Standard I/O library, or use 
direct system calls .

the disk’s surface with a tiny magnet, this is
the closest you can get to the metal when it 
comes to file I/O.

Moving up a level
Let’s move up a level and re-write the
program using the standard I/O library 
instead of direct system calls:
#include <stdio.h>
#define BSIZE 1024

void main()
{
  FILE *fin, *fout; /* Input and output handles */
  char buf[BSIZE];
  int count;

  fin = fopen(“foo”, “r”);
  fout = fopen(“bar”, “w”);

  while ((count = fread(buf, 1, BSIZE, fin)) > 0)
    fwrite(buf, 1, count, fout);

  fclose(fin);
  fclose(fout);
}

It doesn’t look too much different, does it?
File descriptors are now of type FILE * 
instead of just integers, and the calls are 
renamed – open() becomes fopen() and so 
on. But there’s an important distinction. The 
first program used Unix-specific calls; the 
second uses routines from the standard I/O 
library, so it should run anywhere that C is 
supported.

The I/O calls we’ve just seen – read(), 
write(), fread() and fwrite() – just do binary 
I/O. There’s no sort of format conversion; 
they just shovel bytes between a file and an 
in-memory buffer. In contrast, fprintf() does 
formatted output of strings and numeric 
data, something like this:
fprintf(fout, “Answer is %f\n”, 22.0/7.0);

Random access
By default, the contents of a file are read
sequentially. There’s a “file position pointer” 
maintained for each open file, which points 
to a specific byte offset within the file and 
determines where the next read or write will 
start. If I read 1024 bytes, the pointer 
advances by that much so that the next read 
continues where the last left off. Our file 
copy program relies on this behaviour for 
both the input and output files.

However, it’s possible to explicitly manage 
this file position pointer, moving it to any 
desired position within the file. This gives us 
‘random access’, as opposed to ‘sequential 
access’, into the data. (The use of the word 

‘random’ here has always struck me as
rather odd. It shows up again in the 
common abbreviation RAM – Random 
Access Memory – and seems to suggest 
that we have no control over which piece of 
the data we actually get. But I digress.)Here’s 
an example that swaps the first and last 
lines in a text file. I confess it’s slightly 
contrived; in particular it assumes that the 
first and last lines are the same length. But it 
illustrates random access quite well. This 
example is in PHP, though since PHP is just 
providing its own language binding to the 
same standard I/O library, the code would 
not look that much different in C:
 1. #!/usr/bin/php
 2. <?php
 3.   $f = fopen(“foo”, “r+”);
 4.   /* walk to the first newline */
 5.   while (fread($f, 1) != “\n”) ;
 6.
 7.  /* get current file position */
 8.   $n = ftell($f);
 9.
10.   /* Read and save the first line */
11.   rewind($f);
12.   $alpha = fread($f, $n);
13.
14.   /* Read and save the last line */
15.   fseek($f, -$n, SEEK_END);
16.   $omega = fread($f, $n);

17.
18.   /* Replace the first line */
19.   fseek($f, 0, SEEK_SET);
20.   fwrite($f, $omega, $n);
21.
22.   /* Replace the last line */
23.   fseek($f, -$n, SEEK_END);
24.   fwrite($f, $alpha, $n);
25.   fclose($f);
26. ?>

Here’s the scoop. We open the file at line
3. The parameter r+ is important – it says 
that we want to both read and write the file. 
The loop at line 5 (with an empty body) just 
walks along the file a byte at a time until we 
reach the first newline character. We are 
trying to figure out how long the line is. The 
ftell() call at line 8 gets the current file 
pointer position; this gives us the line length. 
Line 11 resets the file position pointer to the 
beginning. The call
fseek($f, 0, SEEK_SET)
would do the same. Then at line 12 we
re-read that first line all in one go, saving it 
for later. Line 15 is interesting. It positions 
the file pointer one line before the end of the 
file. (This is where our assumption that the 
first and last lines are the same length kicks 
in.) At line 16 we read in that last line. At line 
19 we rewind to the beginning of the file 
again then overwrite the first line of text. 

Portability and the standard I/O library

Portable application
using standard

library

Linux-specific
application
using direct
system calls

Standard
I/O library

Kernel

fopen( )
fread( )
fseek( )
fprintf( ), etc

open( )
read( )
lseek( ), etc

open( )
read( )
lseek( ), etc



CORETECHNOLOGY

www.linuxvoice.com66

rseek()

Finally, at lines 23 and 24 we scoot along to
the start of the last line of the file and 
overwrite that, too.

Well, that’s a little tricky to follow, so I’ve 
drawn a diagram that might help (see 
below). And if you want to explore this in 
more detail, the man page for fseek will 
show you the C language bindings for these 
functions, or browse to http://php.net/
manual/en/function.fseek.php to see the 
PHP bindings.

Listing directories, deleting files
So far we’ve concentrated on accessing the
data within a file, with code that does things 
broadly equivalent to commands like cat 
and cp. Let’s shift focus a little and look at 
the management of the filesystem itself; 
something more analogous to commands 
like cd, ls, and rm. Here’s a program that will 
delete all the files in a directory (passed as a 
command line argument). To add variety, 
this one’s in Perl; it even has some error 
checking built in!
 1. #!/usr/bin/perl
 2.
 3. if (@ARGV != 1) {
 4.   warn “usage: empty dirname\n”;
 5.   exit(1);
 6. }
 7.
 8. if (!chdir($ARGV[0])) {
 9.   warn “$ARGV[0]: $!\n”;
10.   exit(1);
11. }
12.
13. opendir($d, “.”);
14. 
15. foreach $info (readdir($d)) {
16.   if ($info ne “.” && $info ne “..”) {
17.     print “removing $info\n”;
18.     if (unlink($info) != 1) {
19.       warn “$info: $!\n”;
20.       exit(2);
21.     }
22.   }
23. }

Let’s talk through this. Lines 3–6 verify that

the user provided a command-line 
argument, printing an error message and 
bailing out if not. Lines 8–11 change into the 
directory specified on the command line 
(equivalent to cd in a shell script), printing an 
error if this fails. Line 13 opens the directory; 
the handle is returned in $d. Line 15 is the 
start of a loop, calling readdir() repeatedly to 
enumerate the files in the directory. There is 
an explicit check at line 16 to ignore the 
entries . and ..; otherwise the file is deleted
(unlinked) at line 18. Notice that the program 
will fail ungracefully if there’s a subdirectory 
in the directory you’re emptying. Do be 
careful if you run this example – it really will 
remove all the files in the directory you 
specify, so beware!

My reason for providing examples in 
different languages is not just to add variety, 
but to make the point that although different 
languages have different syntax, they are all 
providing language bindings to the same 
library routines – in this case chdir(), 
opendir(), readdir() and unlink(). 

Everything looks like a file
As we reach the end of this discussion we’re
in a good position to answer the question 
“what is a file?” Well, the traditional answer is 
that it’s information stored on a disk, 
referenced by a name. But there’s a broader 
view… anything that responds to the classic 
system calls such as open(), read() and 
write() in the appropriate way is going to 

look like a file, and can be accessed by the
usual command line tools like cat or cp. This 
perhaps makes a little more sense of the 
‘files’ in the procfs and sysfs virtual 
filesystems, usually mounted onto /proc 
and /sys. These files are purely a figment of 
the kernel’s imagination, providing a view 
from userspace into internal kernel data. For 
example, the following command:
$ cat /proc/cpuinfo
will provide details of the kernel’s view of the
processor on which it’s running. Most parts 
of these filesystems are read-only – you 
can’t upgrade your processor by writing to  
/proc/cpuinfo or get more memory by 
writing to /proc/meminfo. But some 
parameters can be tweaked by writing to the 
appropriate ‘file’. A classic example is /proc/
sys/net/ipv4/ip_forward, which determines 
whether the Linux kernel will forward (route) 
IP traffic. By default this is disabled, (zero) as 
you’ll see if you examine the file:
$ cat /proc/sys/net/ipv4/ip_forward
0
but you can enable it by writing to the ‘file’
(you’ll need to do this as root):
# echo 1 > /proc/sys/net/ipv4/ip_forward

There are lots more parameters you can
interrogate and adjust in this way; my 
purpose here is not to survey them all  
but simply to point out that we are able to 
treat these things like files because they 
respond to the file I/O system calls in the  
the usual way.

mmap
The mmap() system call provides a very 
different approach to random access into 
a file’s data. It allows a file’s contents to be 
mapped into the address space of a process 
and accessed like an array. Random access is 
achieved simply by indexing into the array. The 
mmap call itself is a little complicated, but if 
you’re looking for an efficient way to dive into a 
file, mmap may be worth a look.

Linux supports random access into a file’s data. Numbered circles correspond to numbered 
code lines within the main text.

Swapping records in a file

fread()

rewind()

fwrite()

fseek()

fread()

File “foo” (before)

fwrite()

fseek()

File “foo” (after)omega

ftell()                       $n

alpha

alpha omega

12

11 15

16

8

20 24

19 23



CORETECHNOLOGY

www.linuxvoice.com 67

Similarly, most of the things in /dev
present a file-like view to userspace. 
Pseudo-devices like /dev/null, /dev/random, 
and /dev/zero deliver data streams (or not, 
in the case of /dev/null). Disk partitions have 
names like /dev/sda3 (these are linked to 
more complex names in modern linux 
kernels) and can be written to like a file, so 
that a command like:

$ echo “Kilroy was here” > /dev/sda3
is perfectly legal, though probably not at all a
good idea if there is a filesystem on sda3.

This “everything looks like a file” view of 
things, which is such a fundamental part of 
Linux, provides a very consistent picture of 
the world, with disk partitions having 
owners, timestamps and access 
permissions just like regular files. The only 

things that aren’t part of this world (for 
reasons I have never really understood) are 
the network interfaces. There’s no /dev/eth0 
for example.

Next month I’m planning to look at the 
system calls that examine and modify a 
file’s attributes, and to examine the inotify() 
API, which lets you monitor the filesystem 
for changes. See you then!  

My command of the month is dd. It’s
basically a file copy program. A simple 
invocation is:
$ dd if=foo of=bar
which copies the file foo to bar. Of course
you could do it more easily with cp. 

But dd supports various conversions  
that will be applied to the file as it is copied. 
For example,
$ dd if=foo of=bar conv=ucase
will convert the file to upper case. Or:
$ dd if=foo of=bar conv=swab
will swap each pair of bytes in the file
(historically useful if you were moving data 
between “little-endian” and “big-endian” 
machines).

The dd command also lets you control 
how much data is copied, and in what size 

chunks. For example:
$ dd if=/dev/zero of=zeros bs=1MB count=10
copies the pseudo-device /dev/zero (an
endless source of zeros) into the file zeros, 
copying 1MB (1 million bytes) at a time, and 
continuing for 10 records. So we end up with 
a file exactly 10,000,000 bytes long.

Occasionally dd is used to image disk 
partitions. For example,
# dd if=/dev/sda3 of=sda3copy
will make a direct bit-for-bit copy of a
complete disk partition into the file 
sda3copy. Or you can restore a partition by 
doing it the other way round:
# dd if=sda3copy of=/dev/sda3
though please don’t try this at home, folks,
unless you know what you are doing! Also 
beware that copying disk partitions in this 

Command of the month: dd
way may not be the most efficient approach,
because dd will blindly copy the partition 
byte by byte, whereas tools like Partimage 
and Clonezilla, which understand the 
filesystem structure, will only copy the 
blocks that are actually in use. This can 
result in a much smaller image if the file 
system isn’t very full.

The name dd, and to some extent its 
command syntax (which is decidedly not 
Unix-like) are a reference to an old job 
control language used on IBM mainframes.  
Nowadays we take the ease and elegance of 
the Unix command line for granted. If you 
think it’s arcane, please believe an old-timer: 
the job control language needed to persuade 
an IBM mainframe to to anything at all was 
breathtaking in its obscurity.  

 How to become invisible

Would you like to learn how to write to a file that 
has no name from a program that doesn’t exist? 
Here’s how! There’s a well-known (but slightly 
weird) feature of Linux that if a program opens a 
file then deletes it (keeping it open) the file will 
continue to exist. It will have a valid inode but no 
entry in the filesystem. Here’s a program that does 
exactly that (this one’s in C again):
 1. #include <fcntl.h>
 2.
 3. main()
 4. {
 5.   int fout;
 6.   char buf[10];
 7.   fout = open(“/tmp/topsecret”, O_WRONLY | O_
CREAT, 0600);
 8.   unlink(“/tmp/topsecret”);
 9.   write(fout, “attack at dawn\n”, 16);
10.   pause();
11. }
The pause() at line 10 is there simply to keep the 
process alive.

To compile this program, place the code into a 
file called secret.c and compile it with:
$ gcc -o secret secret.c
If we run this program with the unlink() call at line 8 
commented out, we can of course list and examine 

the output file in the usual way:
$ ./secret &
$ ls -l /tmp/topsecret 
-rw------- 1 chris chris 16 Aug  6 15:06 /tmp/topsecret
$ cat /tmp/topsecret 
attack at dawn

But if we re-run it with line 8 in place, things 
get more interesting. There will be no entry in the 
filesystem for /tmp/topsecret. It won’t show up on 
the output of ls and you certainly can’t examine it 
with cat.
$ ls -l /tmp/topsecret
ls: cannot access /tmp/topsecret: No such file or 
directory

We can even delete the executable:
$ rm secret

Now, neither the file we’re writing nor the 
program that’s writing it has an entry in the 
filesystem. Is this weird or what? And why do 
we care? Well, let’s pin on our “Paranoid About 
Security” badges and imagine that a hacker of 
evil intent has managed to plant a program on our 
machine that is collecting important information 
in a file that it later intends to transmit back to the 
bad guy. Using this trick, our villain remains pretty 
well hidden. But not entirely. We can ask lsof (my 
command of the month in LV005) to show unlinked 

files like this:
$ sudo lsof +L1
secret    8632 chris    3w   REG    8,1       16     0 
1573121 /tmp/topsecret (deleted)

The option +L1 tells lsof to only show files 
that have a link count less than 1. If you run this 
command you will almost certainly see lines of 
output in addition to the one shown here from 
programs like init (among others).

OK, so we have some evidence that the file still 
exists. From this output we know its size (16 bytes) 
and we know the PID of the process that has it 
open (8632). But given that it has no name, can 
we see its contents? It turns out we can! You may 
be aware that /proc contains directories named 
after each process ID, and within each of these is 
a subdirectory called fd. Here you’ll find symbolic 
links (named after the file descriptor) to each 
file that the process has open. In this case, file 
descriptor 3 is the one we’re interested in:
$ cd /proc/8632/fd
$ ls
0  1  2  3
$ cat 3
attack at dawn
and – hey presto! – we see the contents of our 
invisible file.


